期刊文献+

基于贪婪稀疏优化的欠定语音盲分离方法

Underdetermined blind speech source separation method based on greedy sparse optimization
下载PDF
导出
摘要 提出一种基于语音信号稀疏特征的稀疏分量分析两步法,力图提高欠定情况下的语音信号盲分离性能。不同于传统的两步法,所提方法需要获取语音信号在变换域中的稀疏特征,将贪婪最优化思想引入至稀疏分量分析方法中,重构欠定盲分离语音源信号。通过仿真对比实验,展示了该方法应用于平稳声音信号和非平稳语音信号的盲分离效果,它能较好恢复语音源信号。与现有的最短路径法相比,所提算法可以提高两路以上观测信号的分离性能。相较于平滑L0范数算法,所提算法可以有效提高来波方向较近的语音盲信号分离性能。该方法具有更广阔的适用范围。 A two-step sparse component analysis method based on sparse feature of speech signal was proposed to improve the performance of underdetermined blind speech source separation.Different from the traditional two-step method,the proposed method needed to acquire the sparse features of speech signals in the transform domain,and greedy optimization idea was introduced into sparse component analysis method to reconstruct the underdetermined blind separation of speech source signals.Through the simulation and comparison experiments,the performance of the proposed method is shown by applying to stationary and non-stationary speech signals,and it can recover the speech source signals well.Compared with the existing shortest path method,the proposed algorithm can improve the separation performance of more than two observed signals.Compared with the smooth L0 norm algorithm,the proposed algorithm can effectively improve the separation performance of the unknown sources from the close-spaced direction.Therefore,the proposed algorithm has a broader scope of application.
作者 魏爽 杨璟安 徐朋 龙艳花 WEI Shuang;YANG Jing-an;XU Peng;LONG Yan-hua(College of Information,Mechanical and Electrical Engineering,Shanghai Normal University,Shanghai 200234,China)
出处 《计算机工程与设计》 北大核心 2021年第8期2299-2307,共9页 Computer Engineering and Design
基金 国家自然科学基金项目(61401145、61701306) 上海市自然科学基金项目(19ZR1437600) 上海师范大学硕士研究生学术新人培育基金项目(209-AC9103-19-368005277)。
关键词 欠定盲源分离 稀疏分量分析 贪婪稀疏优化 源信号重构 语音信号盲分离 underdetermined blind source separation sparse component analysis greedy sparse optimization source signal reconstruction speech signal blind source separation
  • 相关文献

参考文献5

二级参考文献59

  • 1易慧子,肖林.语音盲源分离相关实验研究[J].中山大学研究生学刊(自然科学与医学版),2011,32(4):84-95. 被引量:1
  • 2李臣明,张师明,李昌利.非负矩阵分解的一个约束稀疏算法[J].四川大学学报(工程科学版),2015,47(2):108-111. 被引量:3
  • 3袁方,周志勇,宋鑫.初始聚类中心优化的k-means算法[J].计算机工程,2007,33(3):65-66. 被引量:152
  • 4汪宏年,陶宏根,王桂萍,张玲玲.双感应测井资料的快速近似迭代反演[J].地球物理学报,2007,50(5):1614-1622. 被引量:14
  • 5Goyal V K, Fletche A K, Rangan R S. Compressive sampling and lossy compression[J]. IEEE Signal Processing Magazine, 2008, 25(2): 48-56.
  • 6Becker S, Bobin J, Cands [J]. NESTA: A fast and accurate first-order method for sparse recovery[J]. Siam Journal on Im- aging Sciences , 2011, 4(1): 1-39.
  • 7Donoho D I., Tsaig Y, Drori I, et al. Sparse solution of underdetermined linear equations by stagewise orthogonal matching pursuit[J]. IEEE Transactions on Information, 2012,58(2) :1094-1121.
  • 8Chen S S, Donoho D L, Saunders M A. Atomic decomposition by basis pursuit[J]. SIAM Journal of Scientific Computing, 1998,20(1):33 36.
  • 9Dai W,Milenkovic Q. Subspace pursuit for compressive sensing signal reconstruction[J]. IEEE Transactions on Information Theory,2009,55(5) :2230-2249.
  • 10Tropp J, Gilbert A. Signal recovery from random measurements via orthogonal matching pursuit[J]. IEEE Trans Inf Theory, 2008,53(12): 4655-4666.

共引文献37

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部