期刊文献+

基于一致性协议的多无人机协同围捕控制方法 被引量:8

Cooperative capture control method for multi-UAV based on consensus protocol
下载PDF
导出
摘要 针对无人机对运动目标的协同围捕问题,设计了一种快速协同围捕控制算法。首先,基于人工势场法设计了无人机与目标的动态博弈关系,使得目标的运动更加趋近于现实场景下逃跑者的行为模式。其次,利用无人机与目标的速度关系,将二维阿波罗尼奥斯圆扩展为三维阿波罗尼奥斯球,通过阿波罗尼奥斯球设计了无人机编队围捕队形。然后,将无人机获取的目标信息引入到一致性协议,以此来完成无人机编队对目标的协同编队围捕,并引入二跳网络加快围捕队形收敛,提高了无人机编队的任务执行效率。最终,通过仿真实验证明了该控制算法的有效性。 In view of the problem of unmanned aerial vehicle(UAV)cooperative capture of moving target,a fast cooperative capture control algorithm is designed.Firstly,the dynamic game relationship between UAVand target is designed based on the artificial potential field method,which makes the movement of target closer to the behavior pattern of the escapee in the real scene.Secondly,by using the velocity relationship between UAVand target,the two-dimensional Apollonius circle is extended to three-dimensional Apollonius ball,and the capture formation UAVformation is designed through the Apollonius ball.Then,the target information obtained by UAVis introduced into the consensus protocol to complete the cooperative formation capture of UAVformation,and the twOhop network is introduced to accelerate the convergence of the capture formation,which improves the task execution efficiency of UAVformation.Finally,the simulation experiment results show the effectiveness of the control algorithm.
作者 符小卫 陈子浩 FU Xiaowei;CHEN Zihao(School of Electronics and Information,Northwestern Polytechnical University,Xi’an 710129,China;System Design Institute of Hubei Aerospace Technology Academy,Wuhan 430040,China)
出处 《系统工程与电子技术》 EI CSCD 北大核心 2021年第9期2501-2507,共7页 Systems Engineering and Electronics
基金 航空科学基金(202023053001)资助课题.
关键词 一致性协议 围捕 无人机编队 阿波罗尼奥斯圆 consensus protocol capture unmanned aerial vehicle(UAV)formation Apollonius circle
  • 相关文献

参考文献7

二级参考文献36

  • 1张海俊,史忠植.动态合同网协议[J].计算机工程,2004,30(21):44-46. 被引量:36
  • 2周浦城,洪炳镕,王月海.动态环境下多机器人合作追捕研究[J].机器人,2005,27(4):289-295. 被引量:16
  • 3Isaacs R. Differential games: A mathematical theory with ap- plications to warfare and pursuit, control and optimization[M]. Hoboken, NJ, USA: John Wiley & Sons Inc., 1965: 1-102.
  • 4Vidal R, Shakernia O, Kim H J, et al. Probabilistic pursuit- evasion games: Theory, implementation, and experimental eval- uation[J]. IEEE Transactions on Robotics and Automation, 2002, 18(5): 662-669.
  • 5Lazhar K, Farid T, Kamel B, et al. Mobile robot navigation based on Q-learning technique[J]. International Journal of Ad- vanced Robotic Systems, 2011, 8(1): 45-51.
  • 6Zhou P C, Hong B R, Wang Y H, et al. Multi-agent cooper- ative pursuit based on extended contract net protocol[C]//In- ternational Conference on Machine Learning and Cybernetics. Piscataway, NJ, USA: IEEE, 2004: 169-173.
  • 7Cai Z S, Sun L N, Gao H B, et al. A novel hierarchical de- composition for multi-player pursuit evasion differential game with superior evaders[C]//World Summit on Genetic and Evolu- tionary Computation. New York, NY, USA: ASSOC Computing Machinery, 2009: 795-798.
  • 8Steven L, Robert W. Automatic methods for continuous state space abstraction[R]. Menlo Park, CA, USA: AAAI, 2010: 48- 53,.
  • 9Piater J, Jodogne S, Detry R, et al. Learning visual representa- tions for perception-action systems[J]. International Journal of Robotics Research, 2011, 30(3): 294-307.
  • 10Herrero-Perez D, Martinez-Barbera H, LeBlanc K. Fuzzy uncertainty modeling for grid based localization of mobile robots[J]. International Journal of Approximate Reasoning, 2010, 51(8): 912-932.

共引文献55

同被引文献102

引证文献8

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部