期刊文献+

自适应在线增量ELM的故障诊断模型研究 被引量:4

Research on an adaptive online incremental ELM fault diagnosis model
下载PDF
导出
摘要 为满足现役装备根据故障样本数据集积累的特点进行自适应故障诊断的需求,本文将极限学习机(extreme learning machine,ELM)的数据增量学习、隐藏层增量学习和输出层增量学习(类增量学习)3种增量学习模式,融合到一个统一的学习框架内,提出一种凸最优自适应增量在线顺序ELM(convex optimal adaptive incremental online sequential ELM,COAIOS-ELM)。模型能够根据增量学习中误差的变化情况,自适应地增加隐藏层神经元,减小分类误差;并可根据增量数据集中新出现的故障类别,进行相应的类增量学习,增加故障诊断的范围。有效解决了ELM增量学习过程中模型自适应动态选择最佳网络结构的问题,提高模型的故障诊断的精度和故障诊断的范围。本文选择UCI数据集中公共数据集和Biquad低通滤波电路故障诊断数据集,通过与类增量ELM(class incremental ELM,CI-ELM)模型对比实验,验证了所提方法的有效性。 In order to meet the needs of active equipment for adaptive fault diagnosis based on the characteristics of the accumulation of fault sample data sets,this paper uses three types of incremental learning of extreme learning machine(ELM)data incremental learning,hidden layer incremental learning and output layer incremental learning(class incremental learning)The learning mode is integrated into a unified learning framework,and a convex optimal adaptive incremental online ELM(COAIOS-ELM)is proposed.The model can adaptively increase hidden layer neurons according to the change of the error in incremental learning to reduce the classification error;and can perform corresponding class incremental learning according to the newly appeared fault category in the incremental data set to increase fault diagnosis range.It effectively solves the problem of model adaptive and dynamic selection of the best network structure in the process of ELM incremental learning,and improves the accuracy and scope of fault diagnosis of the model.This paper selects the public data set in the UCI data set and the Biquad low-pass filter circuit fault diagnosis data set,and verifies the effectiveness of the proposed method by comparing experiments with the class incremental ELM(CI-ELM)model.
作者 刘星 王文双 赵建印 朱敏 LIU Xing;WANG Wenshuang;ZHAOJianyin;ZHU Min(Naval Coastal Defence Academy of the PLA,Yantai 264001,China;Unit 91576 of the PLA troops,NingbO315020,China)
出处 《系统工程与电子技术》 EI CSCD 北大核心 2021年第9期2678-2687,共10页 Systems Engineering and Electronics
基金 国家自然科学基金(11802338)资助课题。
关键词 超限学习机 数据增量学习 隐藏层增量学习 类增量学习 故障诊断 extreme learning machine(ELM) data incremental learning hidden layer incremental learning class incremental learning fault detection
  • 相关文献

参考文献3

二级参考文献35

  • 1曹杰,刘志镜.基于支持向量机的增量学习算法[J].计算机应用研究,2007,24(8):48-49. 被引量:9
  • 2Chawla N V, Japkowicz N. Editorial: Special issue on learning from imbalanced datasets. SIGKDD Explorations, 2004, 6: 1-6.
  • 3Weiss G M. Mining with rarity: A unifying framework. SIGKDD Explor Newsl, 2004, 6: 7-19.
  • 4Japkowicz N, Holte R. Workshop report: AAAI-2000 workshop on learning from imbalanced data sets. AI Magazine, 2001, 22: 127-136.
  • 5Crammer K, Singer Y, Cristianini N, Shawe-taylor J, Williamson B. On the algorithmic implementation of multiclass kernel-based vector machines. Journal of Machine Learning Research, 2001, 2: 265292.
  • 6Wasikowski M, Chen X W. Combating the small sample class imbalance problem using feature selection. Knowledge and Data Engineering, IEEE Transactions on, 2010, 22: 1388-1400.
  • 7Chen X, Gerlach B, Casasent D. Pruning support vectors for imbalanced data classification. In: Proceedings of the International Joint Conference on Neural Networks. Montrcal, Canada, 2005: 1883-1888.
  • 8Tang Y, Zhang Y Q, Chawla N, Krasser S. SVMs modeling for highly imbalanced classification. Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, 2009, 39: 281-288.
  • 9Elkan C. Magical thinking in data mining: Lessons from CoIL challenge 2000. In: Proceedings of the 7thACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA, 2001: 426- 431.
  • 10Zhou Z H, Liu X Y. On multi-class cost-sensitive learning. Computational Intelligence, 2010, 26: 232-257.

共引文献115

同被引文献40

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部