摘要
针对现有图像超分辨率重建方法恢复图像高频细节能力较弱、特征利用率不足的问题,提出了一种多尺度特征融合反投影网络用于图像超分辨率重建.该网络首先在浅层特征提取层使用多尺度的卷积核提取不同维度的特征信息,增强跨通道信息融合能力;然后,构建多尺度反投影模块通过递归学习执行特征映射,提升网络的早期重建能力;最后,将局部残差反馈结合全局残差学习促进特征的传播和利用,从而融合不同深度的特征信息进行图像重建.对图像进行×2~×8超分辨率的实验结果表明,本方法的重建图像质量在主观感受和客观评价指标上均优于现有图像超分辨率重建方法,超分辨率倍数大时重建性能相比更优秀.
Aiming at the problems that existing image super-resolution reconstruction methods have weak ability to restore image high-frequency details and insufficient feature utilization,a multi-scale feature fusion back projection network is proposed for image super-resolution reconstruction.The network first uses multi-scale convolution kernels in the shallow feature extraction layer to extract feature information of different dimensions to enhance crosschannel information fusion;then builds a multi-scale back projection module to perform feature mapping through recursive learning to improve the early reconstruction capabilities of the network;Finally,local residual feedback is combined with global residual learning to promote the spread and utilization of features,thereby fusing feature information of different depths for image reconstruction.The experimental results of×2~×8 SR on the images show that the quality of SR image of this method is better than the existing image super-resolution method in subjective perception and objective evaluation index,and the reconstruction performance is relatively better when the scale factors is large.
作者
孙超文
陈晓
SUN Chao-Wen;CHEN Xiao(School of Electronics and Information Engineering,Nanjing University of Information Science and Technology,Nanjing 210044;Jiangsu Collaborative Innovation Center for Atmo-spheric Environment and Equipment Technology,Nanjing Uni-versity of Information Science and Technology,Nanjing 210044)
出处
《自动化学报》
EI
CAS
CSCD
北大核心
2021年第7期1689-1700,共12页
Acta Automatica Sinica
基金
江苏省333高层次人才培养工程项目(2625)
江苏高校优势学科建设工程资助项目资助。
关键词
图像超分辨率重建
多尺度卷积
特征融合
反投影
Image super-resolution
multi-scale convolution
feature fusion
back-projection