期刊文献+

Hadoop集群异常节点实时检测与诊断算法 被引量:2

Hadoop anomaly real-time detection and diagnosis algorithm
下载PDF
导出
摘要 针对Hadoop集群节点增加导致任务运行效率降低,以及异常节点会拖慢整体作业进度的问题,提出了一种Hadoop集群异常节点实时检测与诊断算法。首先基于正常状态下节点性能相似性原理,使用Logstash工具收集Hadoop集群节点运行日志中的任务状态信息;其次,发现异常节点后,通过Perf性能分析工具收集体系结构性能信息,再利用异常节点诊断算法诊断导致该节点异常的原因。通过实时流计算框架Spark Streaming构建了异常节点实时检测与诊断模型,并设计了一系列的实验验证了本算法的有效性。 The problem that the increase of Hadoop cluster nodes leads to the decrease of task efficiency and the delay of the overall job schedule by abnormal nodes.This paper presents a real-time detection and diagnosis algorithm for outliers in Hadoop cluster.Firstly,based on the principle of node performance similarity under normal state,the task status information in Hadoop cluster node running log is collected by using the Logstash tool.Secondly,after discovering the abnormal node,the architecture performance information collected by the Perf performance analysis tool is used to diagnose the cause of the abnormal node by using the abnormal node diagnosis algorithm.A real-time detection and diagnosis model of abnormal nodes is built by spark streaming,and a series of experiments are designed to verify the effectiveness of the algorithm.
作者 潘伟博 汪海涛 姜瑛 陈星 田帅 PAN Wei-bo;WANG Hai-tao;JIANG Ying;CHEN Xing;TIAN Shuai(School of Information Engineering and Automation,Kunming University of Science and Technology,Kunming 650500,China)
出处 《陕西理工大学学报(自然科学版)》 2021年第4期24-31,共8页 Journal of Shaanxi University of Technology:Natural Science Edition
基金 国家自然科学基金资助项目(61462049)。
关键词 HADOOP集群 异常节点 实时检测 诊断原因 Hadoop cluster abnormal node real-time detection diagnosis reason
  • 相关文献

参考文献1

共引文献3

同被引文献7

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部