期刊文献+

结构化Krylov-SVD分解的显著性目标检测算法 被引量:1

Salient Object Detection Algorithm Based on Structured Krylov-SVD Decomposition
下载PDF
导出
摘要 针对低秩矩阵在图像显著性检测中,因凸松弛迭代奇异值分解导致的计算复杂度高及稀疏矩阵元素间潜在结构关系未充分考虑导致的显著图发散或不完整现象,提出了一种结构化低秩矩阵Krylov-SVD分解的显著性目标检测算法。该算法对Arnoldi模型进行了深入研究,在Krylov-Schur重启算法的基础上对Schur分解进行改进,给出了Krylov-SVD奇异值分解算法,通过求其前k个特征值,对稀疏矩阵进行降阶处理,以降低计算复杂度;随后引入了索引树结构化稀疏范数,利用分层稀疏正则化来连接稀疏矩阵中元素之间的空间关系。实验中采用MSRA10K、SOD和ECSSD三个公开数据集、四种评价指标,与现有的十一种算法进行了对比实验。实验结果表明,该显著性目标检测算法在时间性能和精准性方面有着良好表现。 A salient object detection algorithm based on structured Krylov-SVD decomposition of low-rank matrices is proposed due to the high computational complexity caused by the convex relaxation iterative singular value decomposition and the incompleteness of the saliency map caused by the inadequate consideration of potential structural relationships between sparse matrix elements.The algorithm provides an in-depth study of the Arnoldi model,improves the Schur decomposition on the basis of the Krylov-Schur restart algorithm,and gives the Krylov-SVD singular value decomposition algorithm,which reduces the computational complexity by deregulating the sparse matrix by solving its first k eigenvalues.And then the index tree structured sparse parametric is introduced,and hierarchical sparse regularization is used to connect the spatial relationships between elements in the sparse matrix.Three public data sets,MSRA10K,SOD and ECSSD,and four evaluation metrics are used in the experiments for comparison with eleven existing algorithms.The experiment shows that the proposed algorithm has better performance in terms of time performance and accuracy.
作者 郑维佳 张荣国 胡静 赵建 刘小君 ZHENG Wei-jia;ZHANG Rong-guo;HU Jing;ZHAO Jian;LIU Xiao-jun(School of Computer Science and Technology,Taiyuan University of Science and Technology,Taiyuan 030024,China;School of Mechanical Engineering,Hefei University of Technology,Hefei 230009,China)
出处 《计算机技术与发展》 2021年第8期45-50,62,共7页 Computer Technology and Development
基金 山西省自然科学基金(201801D121134) 国家自然科学基金(51875152)。
关键词 显著目标检测 结构化低秩矩阵 Arnoldi模型 Krylov-SVD分解 索引树 salient object detection structured low-rank matrix Arnoldi model Krylov-SVD decomposition Index tree
  • 相关文献

参考文献3

二级参考文献25

  • 1徐树方,钱江.矩阵计算六讲[M].北京:高等教育出版社,2011.
  • 2Willcox K,Peraire J.Balanced model reduction via theproper orthogonal decomposition[J].AIAA Journal,2002,40:2323-2330.
  • 3Boley D L.Krylov space methods on state-space controlmodels,Technical report TR92-18[R].University of Minnesota,1992.
  • 4Boley D L,Golub G.The nonsymmetric Lanczos algorithmand controllability[J].Syst Contr Lett,1991,16(2):97-105.
  • 5Gugercin S,Antoulas A C.A survey of model reductionby balanced truncation and some new results[J].InternationalJournal of Control,2004,77(8):748-766.
  • 6Jbilou K.An Arnoldi based algorithm for large algebraicRiccati equations[J].Appl Math Lett,2006,19(5):437-444.
  • 7Lee H J,Chu C C,Feng W S.An adaptive order rationalArnoldi method for model order reductions of linear timeinvariant systems[J].Linear Alg Appl,2006,415(23):235-261.
  • 8Chu C C,Lai M H,Feng W S.Model order reductionsfor MIMO systems using global krylov subspace methods[J].Math Comput Simulat,2008,79(4):1153-1164.
  • 9Sorensen D C.Implicit application of polynomial filtersin a k-step Arnoldi method[J].SIAM J Matrix Anal Appl,1991,13(1):351-385.
  • 10Stewart G W.A krylov-shur algorithm for large eigen problems[J].SIAM J Matrix Anal Appl,2001,23(3):601-614.

共引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部