摘要
Two-dimensional semiconductors(2DSCs)with appropriate band gaps and high mobilities are highly desired for future-generation electronic and optoelectronic applications.Here,using first-principles calculations,we report a novel class of 2DSCs,group-11-chalcogenide monolayers(M_(2)X,M=Cu,Ag,Au;X=S,Se,Te),featuring with a broad range of energy band gaps and high carrier mobilities.Their energy band gaps extend from 0.49 to 3.76 eV at a hybrid density functional level,covering from ultraviolet-A,visible light to near-infrared region,which are crucial for broadband photoresponse.Significantly,the calculated room-temperature carrier mobilities of the M_(2)X monolayers are as high as thousands of cm^(2)·V^(-1)·s^(-1).Particularly,the carrier mobilities ofε-Au_(2)Se and e-Au2Te are up to 104 cm^(2)·V^(-1)·s^(-1),which is very attracitive for electronic devices.Benefitting from the broad range of energy band gaps and superior carrier mobilities,the group-11-chalcogenide M_(2)X monolayers are promising candidates for future-generation nanoelectronics and optoelectronics.
基金
supported by the National Natural Science Foundation of China(No.61888102)
the National Key Research and Development Projects of China(No.2016YFA0202300)
the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB30000000)
the Fundamental Research Funds for the Central Universities.