期刊文献+

基于视觉引导多AGV系统的改进A*路径规划算法 被引量:14

Improved A*path planning algorithm for vision-guided multi-AGV system
原文传递
导出
摘要 研究基于视觉引导自动引导车(AGV)的改进A*路径规划算法.首先,设计一种包含导航、定位和任务信息的图形编码标志方法,AGV通过识别位于车身前方网格型路径中有序排布的编码标志进行快速定位和下一位置预判,为多AGV规划奠定基础;其次,根据网格型路径构成的动态随机网络,提出一种改进A*算法,将AGV在运动时产生的动态时间耗费作为参考指标,以实现多AGV在路径网络中的路径规划和冲突避让策略,提高固定路网资源的利用效率;最后,对多AGV在网格型路径中协同工作的场景进行仿真,实验结果表明,所提出的改进算法可以有效应用于多AGV系统,并且提升整体系统的工作效率. This paper mainly focuses on an improved A*path planning algorithm for vision-guided automated guided vehicles(AGVs).A type of graphic coded mark method is firstly designed,which includes navigation,positioning as well as task information and ensures that the AGV can recognize the orderly arranged coded marks in the path to quickly locate and predict the next position,which lays the foundation for multi-AGV planning.Then,an improved A*algorithm considering the dynamic time cost is proposed to guarantee the path planning and collision avoidance strategy of multiAGV in the path network,and effectively improve the utilization efficiency of path network resources.Finally,numerical simulation results show that the proposed improved algorithm can be effectively applied to the multi-AGV system and improve the entire work efficiency.
作者 廉胤东 谢巍 LIAN Yin-dong;XIE Wei(School of Automation Science and Engineering,South China University of Technology,Guangzhou 510640,China)
出处 《控制与决策》 EI CSCD 北大核心 2021年第8期1881-1890,共10页 Control and Decision
基金 国家自然科学基金项目(61973125) 广东省自然科学基金项目(2018A030310371,2017A030313385) 广东省科技计划项目(2018B010108001,2017B090914001,2017B090901040,2017B030306017) 广东省“扬帆计划”引进创新创业团队项目(2016YT03G125)。
关键词 自动引导车 视觉导航 图形编码标志方法 路径规划 冲突避让 A*算法 AGV visual navigation graphic coded mark method path planning collision avoidance A*algorithm
  • 相关文献

参考文献7

二级参考文献111

  • 1闻朝中,李智.粒子群算法在配电网络无功补偿优化中的应用[J].武汉工业学院学报,2004,23(1):18-21. 被引量:39
  • 2张纯刚,席裕庚.Robot path planning in globally unknown environments based on rolling windows[J].Science China(Technological Sciences),2001,44(2):131-139. 被引量:12
  • 3戴博,肖晓明,蔡自兴.移动机器人路径规划技术的研究现状与展望[J].控制工程,2005,12(3):198-202. 被引量:75
  • 4Hofner C, Schmidt G. Path planning and guidance techniques for an autonomous mobile robot[J]. Robotic and Autonomous Systems, 1995, 14(2): 199-212.
  • 5Schmidt G, Hofner C. An advaced planning and navigation approach for autonomous cleaning robot operationa[C]. IEEE Int Conf Intelligent Robots System. Victoria, 1998: 1230-1235.
  • 6Vasudevan C, Ganesan K. Case-based path planning for autonomous underwater vehicles[C]. IEEE Int Symposium on Intelligent Control. Columbus, 1994:160-165.
  • 7Liu Y. Zhu S, Jin B, et al. Sensory navigation of autonomous cleaning robots[C]. The 5th World Conf on Intelligent Control Automation. Hangzhou, 2004: 4793- 4796.
  • 8De Carvalho R N, Vidal H A, Vieira P, et al. Complete coverage path planning and guidance for cleaning robots[C]. IEEE Int Conf Industry Electrontics. Guimaraes, 1997: 677-682.
  • 9Ram A, Santamaria J C. Continuous case-based reasoning[J]. Artificial Inteligence, 1997, 90(1/2): 25-77.
  • 10Arleo A, Smeraldi E Gerstner W. Cognitive navigation based on non-uniform Gabor space sampling, unsupervised growing Networks, and reinforcement learning[J]. IEEE Trans on Neural Network, 2004, 15(3): 639-652.

共引文献605

同被引文献142

引证文献14

二级引证文献30

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部