摘要
This study addresses the formation of anisotropic compact star models in the background of f(T,T)gravity(where T and T represent the torsion and trace of the energy momentum tensor,respectively).f(T,T)gravity is an extension of the f(T)theory,and it allows a general non-minimal coupling between T and T.In this setup,we apply Krori and Barua's solution to the static spacetime with the components ξ=Br^(2)+c and ψ=Ar^(2).To develop viable solutions,we select a well-known model f(T,T)=αT^(m)+βT+Ф(where α and β are coupling parameters,and Ф indicates the cosmological constant).We adopt the conventional matching of interior and exterior space time to evaluate the unknowns,which are employed in the stellar configuration.We present a comprehensive discussion on the stellar properties to elaborate the anisotropic nature of compact stars corresponding to well-known models:PSRJ1416-2230,4U1608-52,CenX-3,EXO1785-248,and SMCX-1.Via physical analysis,it is observed that the solution of compact spheres satisfy the acceptability criteria,and its models behave optimally and depict stability and consistency,in accordance with f(T,T)gravity.