期刊文献+

基于全文知识网络的学术资源关联发现实践 被引量:1

Discover Linked Relations among Academic Resources Based on Full-Text Knowledge Network
原文传递
导出
摘要 【目的/意义】通过对学术资源进行深度挖掘与语义化组织,实现学术资源及其内部知识之间的关联发现。【方法/过程】本文提出基于全文知识网络的学术资源关联发现方法,设计了全文知识网络的模型和构建流程,以Pubmed Central数据库中拟南芥(Arabidopsis)相关的520篇期刊论文全文数据为实验对象,通过全文解析和挖掘将其分解为细粒度的知识,形成全文知识网络。然后利用SPARQL查询和RelFinder可视化工具从数字资源层、知识单元层和知识对象层三个层次开展关联发现实验。【结果/结论】本文构建全文知识网络对学术资源进行细粒度组织和挖掘,有助于发现不同学术资源及其内部知识之间的潜在关联,对学术资源的深度利用具有重要的意义。【创新/局限】本文创新之处在于通过构建全文知识网络对学术资源进行细粒度揭示和组织并进一步发现潜在关联,局限在于尚未开展大规模应用实践。 【Purpose/significance】Discover the linked relations among academic resources and their internal knowledge by structuring and organizing academic resources semantically.【Method/process】This paper proposes a method to discover the linked relations of academic resources based on full-text knowledge network, and designs the model and construction process of full-text knowledge network. 520 full-text articles about Arabidopsis are downloaded from the Pubmed Central database. After parsing, knowledge extraction,these articles are described as fine-grained knowledge and constructed into full-text knowledge network. Then SPARQL query and RelFinder visualization tool are used to discover the linked relations between entities in three layers(academic resource layer, knowledge unit and knowledge object layer) of the knowledge network.【Result/conclusion】 This paper constructs a knowledge network to fine-grained organize and reveal academic resources, which is helpful to discover the potential relations between academic resources.It is of important significance for the deep utilization of academic resources.【Innovation/limitation】The innovation of this paper lies in the fine-grained representation, organization and further relation discovery of academic resources through the construction of full-text knowledge network, and the limitation is that large-scale application practice has not been carried out.
作者 王颖 于改红 谢靖 WANG Ying;YU Gai-hong;XIE Jing(National Science Library,Chinese Academy of Sciences,Beijing 100190,China;Department of Library,Information and Archives Management,University of Chinese Academy of Sciences,Beijing 100190,China)
出处 《情报科学》 CSSCI 北大核心 2021年第8期67-77,共11页 Information Science
基金 国家社科青年基金项目“基于关联数据的学术资源深度挖掘方法研究”(15CTQ006)。
关键词 学术资源 全文知识网络 修辞分类 知识抽取 关联发现 academic resource knowledge network rhetorical classify knowledge extraction linked relations discovery
  • 相关文献

参考文献6

二级参考文献70

  • 1安新颖,冷伏海.基于非相关文献的知识发现原理研究[J].情报学报,2006,25(1):87-93. 被引量:36
  • 2张云秋,冷伏海.基于非相关文献知识发现中的文本挖掘研究[J].情报理论与实践,2007,30(2):194-197. 被引量:9
  • 3Lehmann J, Schiippel J, Auer S. Discovering Unknown Connec- tions - the DBpedia Relationship Finder [ C ]. Proc. 1 st Confer- ence on Social Semantic Web ( CSSW 97 ), G1,2007:99-110.
  • 4Julius Volz, Christian Bizer, Martin Gaedke, Georgi Kobilarov.Silk - A Link Discovery Framework for the Web of Data [ C ]. LDOW ( Linked Data on the Web ) 2009, April 20,2009, Ma- drid, Spain.
  • 5Obey Liu. Relation Discovery on the DBpedia Semantic Web [ EB/OL ]. [ 2012 - 01 - 18 ]. http://ensiwiki, en- simag, fr/images/0/05/Db- pedia- relation - discovery - ar- ticle, pdf.
  • 6Benjamin Bengfort, Ranjana Sharma, Ritika Sahni, and Phani Tirupathi. Pathfinder: Complex Relation Discovery and Ontological Management Software for Generic Ontolo- gies or Web Based Triples [EB/OL. [2012-01 - 18 ] http ://obiwan. cs. ndsu. nodak, edu/- rsharrna/ AIProject. pdf.
  • 7Xiao Dong, Ying Ding, Huijun Wang, Bin Chert, David J Wild. Chem2Bio2RDF Dashboard: Ranking Semantic Associations in Systems Chemical Biology Space[ C]. FWCS( The Future of the Web for Collaborative Science)2010, April 26,2010, Raleigh, USA.
  • 8Qingzhao Zheng, Huajun Chen, Tong Yu, Gang Pan. Collabora- tive Semantic Association Discovery From linked Data [ C ]. IRI 2009,10-12 August 2009, Las Vegas, Nevada, USA.
  • 9Philipp Heim, Ste_en Lohmann, Timo Stegemann. Interactive Re- lationship Discovery via the Semantic Web.[EB/OL]. [ 2012- 08-10 ]. http ://www. vis. uni- stuttgart, de/ heimpp/assets/ files/Publikationen/id/eswcl 0 -heimLohmannStegemann. pdf.
  • 10Philipp Heim, Sebastian Hellmann, Jens Lehmann, Steffen Lo- hmann,Timo Stegemann. RelFinder: Revealing Relationships in RDF Knowledge Bases [ EB/OL ]. [ 2012 - 08 - 10]. http:// www. uni-due, de/ s400268/ReIFinder-SAMT09, pdf.

共引文献52

同被引文献15

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部