期刊文献+

Effect of Jet Vortex Generators on Shock Wave Induced Separation on Gas Turbine Profile 被引量:1

原文传递
导出
摘要 The interaction between a shock wave and a boundary layer on a suction side of gas turbine profile,namely Transition Location Effect on Shock Wave Boundary Layer Interaction,was one of main objectives of TFAST project.A generic test section in a transonic wind tunnel was designed to carry out such investigations.The design criteria were to reproduce flow conditions on the profile in wind tunnel as the one existing on the suction side of the turbine guide vane.In this paper,the effect of film cooling and jet vortex generators on the shock wave boundary layer interaction and shock induced separation is presented.Numerical results for Explicit Algebraic Reynolds Stress Model with transition modeling are compared with experimental data.
出处 《Journal of Thermal Science》 SCIE EI CAS CSCD 2021年第4期1435-1443,共9页 热科学学报(英文版)
基金 supported by the 7 EU framework project and was carried out within the research project with the acronym TFAST(Transition Location Effect on Shock Wave Boundary Layer Interaction) supported by CI TASK PL-Grid Infrastructure。
  • 相关文献

参考文献1

二级参考文献11

  • 1Becker B., Reyer M., Swoboda M.; Steady and unsteady numerical investigation of transitional shock-boundary- layer-interactions on a fan blade. Aerospace Science and Technology, Vol. 11, No. 7-8, p. 507-517, 2007.
  • 2Szwaba R., Comparison of the Influence of Differ- ent Air-Jet Vortex Generators on the Separation Re- gion, Aerospace Science and Technology, Volume no. 15, pp. 45-52, (2011).
  • 3Flaszynski E, Szwaba R.: Experimental and Nu- merical Analysis of Streamwise Vortex Generator for Subsonic Flow, Chemical and Process Engi- neering, Vol. 27, No, 3/1, 2006, pp. 985-997.
  • 4Doerffer P., Flaszynski E, Magagnato F.: Stream- wise Vortex Interaction with a Horseshoe Vortex. Journal of Thermal. Science, vol. 12 no. 4, 2003.
  • 5Piotrowicz M., Flaszynski P., Doerffer P.: Investi- gations of shock wave boundary layer interaction on suction side of compressor profile. Journal of Physics: Conference Series, Vol.530, 012068.
  • 6Doerffer E Hirsch C., Dussaug J.P., Babinsky H., Bara-kos G.N; Springer Notes on Numerical Fluid Mechanics and Multidisciplinary Design, Unsteady Effects of Shock Wave Induced Separation, Vol.114, 2010.
  • 7Gostelow J.E: Cascade Aerodynamics, Pergamon Press, Oxford, 1984.
  • 8Jameson, A., Schmidt, W., Turkel, E., 1981, Nu- merical Solutions of the Euler Equations by Finite Volume Methods Using Runge-KuttaTime-Stepping Schemes," AIAA Paper 81-1259, Palo Alto, CA.
  • 9Menter, F. R., Langtry, R. B., Likki, S. R., Suzen, Y. B., Huang, P. G, V61ker, S.: A correlation-based transition model using local variables Part I and Part II, Proceedings of ASME Turbo Expo 2004, Power for Land, Sea and Air, Vienna, June 14-17, 2004.
  • 10Menter F., Garbaruk A., Egorov Y.: Explicit algebraic Reynolds stress models for anisotropic wall-bounded flows", EUCASS - 3rd European Conference for Aero- Space Sciences, July 6-9 th 2009, Versailles, 2009.

共引文献3

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部