期刊文献+

关于一类勾股数的Je?manowicz猜想 被引量:3

A Conjecture of Je?manowicz Concerning Pythagorean Triples
原文传递
导出
摘要 设k,l,m1,m2是正整数,p,q为素数,满足p^(k)=2^(m1)−3^(m2),q^(l)=2^(m1)+3^(m2),且2■m2或2|m1,2|m2.本文证明了对任意正整数n,丢番图方程(q^(2l)−p^(2k)/2n)^(x)+(p^(k)q^(l)n)^(y)=(q^(2l)+p^(2k)/2n)^(z)除x=y=z=2外没有其他的正整数解.从而说明Jesmanowicz猜想在该类情形下成立. Let k,l,m1,m2 be positive integers,p,q be primes such that p^(k)=2^(m1)−3^(m2),q^(l)=2^(m1)+3^(m2),and 2■m2 or 2|m1,2|m2.In this paper,we show that for any positive integer n,the Diophantine equation (q^(2l)−p^(2k)/2n)^(x)+(p^(k)q^(l)n)^(y)=(q^(2l)+p^(2k)/2n)^(z) has no solution in positive integers other than x=y=z=2.The result is still the confirmation of Jesmanowicz's conjecture.
作者 管训贵 GUAN Xungui(School of Mathematics and Physics,Taizhou University,Taizhou,Jiangsu,225300,P.R.China)
出处 《数学进展》 CSCD 北大核心 2021年第4期519-528,共10页 Advances in Mathematics(China)
基金 国家自然科学基金(No.11471144) 江苏省自然科学基金(No.BK20171318) 云南省教育厅科学研究基金(No.2019J1182) 泰州学院教博基金(No.TZXY2018JBJJ002)。
关键词 JESMANOWICZ猜想 丢番图方程 正整数解 Legendre-Jacobi符号 Jesmanowicz’s conjecture Diophantine equation positive integer solution Legendre-Jacobi symbol
  • 相关文献

参考文献7

二级参考文献34

  • 1J:smanowicz L. Some remarks on Pythagorean numbers [J]. Wiadom. Mat., 1956, 1: 196-202.
  • 2Takakawa K. On a conjecture on Pythagorean numbers III [J]. Proc. Japan Acad. Ser. A Math. Sci. 1993, 69: 345-349.
  • 3He Bo, Togb: A. The Diophantine equation n: + (n + 1)y = (n + 2)z revisited [J]. Glasgow Math J., 2009, 51(3): 659-667.
  • 4Deng M, Cohen G L. On the conjecture of Je:manowicz concerning Pythagorean triples [J]. Bull. Austral. Math. Soc., 1998, 57: 515-524.
  • 5Le Maohua. A note on Jegmanowicz' conjecture concerning pythagorean triples [J]. Bull. Austral. Math. Soc., 1999, 89: 477-480.
  • 6Le Maohua. An open problem concerning the Diophantine equation aS : bY = cz [J]. Publ. Math. Debrecen, 2006, 68(3): 283-295.
  • 7Le Maohua. A note on Je:manowicz' conjecture [J]. Colloquium Mathematicum, 1995, 69(1): 47-51.
  • 8Deng Moujie, Cohen G L. A note on a conjecture of Je:manowicz [J]. Colloquium Mathematicum, 2000, 86(1): 25-30.
  • 9Weger B M M de. Solving exponential Diophantine equations using latice basis reduction algorithms [J]. J. Number Theory, 1987, 26: 325-367.
  • 10Miyazaki T. Terai's conjecture on exponential Diophantine equations [J]. J. Number Theory, 2011, 7(4): 981-999.

共引文献20

同被引文献8

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部