摘要
Planthoppers are the most notorious rice pests,because they transmit various rice viruses in a persistent-propagative manner.Protein–protein interactions(PPIs)between virus and vector are crucial for virus transmission by vector insects.However,the number of known PPIs for pairs of rice viruses and planthoppers is restricted by low throughput research methods.In this study,we applied DeNovo,a virus-host sequence-based PPI predictor,to predict potential PPIs at a genome-wide scale between three planthoppers and five rice viruses.PPIs were identified at two different confidence thresholds,referred to as low and high modes.The number of PPIs for the five planthopper-virus pairs ranged from 506 to 1985 in the low mode and from 1254 to 4286 in the high mode.After eliminating the“one-too-many”redundant interacting information,the PPIs with unique planthopper proteins were reduced to 343–724 in the low mode and 758–1671 in the high mode.Homologous analysis showed that 11 sets and 31 sets of homologous planthopper proteins were shared by all planthopper-virus interactions in the two modes,indicating that they are potential conserved vector factors essential for transmission of rice viruses.Ten PPIs between small brown planthopper and rice stripe virus(RSV)were verified using glutathione-S-transferase(GST)/His-pull down or co-immunoprecipitation assay.Five of the ten PPIs were proven positive,and three of the five SBPH proteins were confirmed to interact with RSV.The predicted PPIs provide new clues for further studies of the complicated relationship between rice viruses and their vector insects.
基金
This work was supported by grants from the National Natural Science Foundation of China(No.31772162)
the Chinese Academy of Sciences(No.ZDBS-LYSM027).