期刊文献+

基于硫化镉修饰泡沫镍的可穿戴式压阻传感器 被引量:1

Wearable piezoresistive sensor based on cadmium sulfide modified nickel foam
下载PDF
导出
摘要 针对可穿戴式压阻传感器灵敏度低、压力响应范围小等问题,提出了一种基于硫化镉修饰泡沫镍三维结构的压阻传感器,实现了在多孔泡沫镍上原位合成硫化镉,并制备出可穿戴式压阻传感器。由于泡沫镍具有独特的三维多孔结构,所以硫化镉修饰泡沫镍压阻传感器表现出较高的传感性能。测量结果表明,所提出的具有三维多孔结构的硫化镉修饰泡沫镍压阻传感器的灵敏度为12.94 kPa^(-1),压力响应范围为0~50 kPa。传感器的响应时间为0.6 s,在800个测试周期后传感器的信号输出稳定。所提出的硫化镉修饰泡沫镍压阻传感器在较宽的压力响应范围内表现出较高的灵敏度。这使得其在机器人电子皮肤和人体感知等领域具有广阔的应用前景。 Aiming at the problems of low sensitivity and small pressure response range of the wearable piezoresistive sensors,a piezoresistive sensor based on the three-dimensional structure of cadmium sulfide modified nickel foam was proposed.The in-situ synthesis of cadmium sulfide on porous nickel foam was realized and the wearable piezoresistive sensor was prepared.Due to the unique three-dimensional porous structure of nickel foam,the piezoresistive sensor modified by cadmium sulfide nickel foam exhibited higher sensing performance.The measurement results show that the proposed piezoresistive sensor has a sensitivity of 12.94 kPa^(-1) and a pressure response range of 0-50 kPa.The response time of the sensor is 0.6 s,and the signal output of the sensor is stable after 800 test cycles.The proposed cadmium sulfide modified nickel foam piezoresistive sensor exhibits higher sensitivity in a wider pressure response range.This offers it the broad application prospects in the fields of robot electronic skin and human body perception.
作者 姜涛 JIANG Tao(School of Electronic Information Engineering,Changchun University,Changchun130000,China)
出处 《电子元件与材料》 CAS CSCD 北大核心 2021年第8期795-799,共5页 Electronic Components And Materials
基金 国家重点研发计划(2018YFE0119800)。
关键词 压阻传感器 硫化镉 泡沫镍 电子皮肤 人体感知 piezoresistive sensor cadmium sulfide nickel foam electronic skin human perception
  • 相关文献

参考文献9

二级参考文献36

  • 1梁旭,贾宇峰,刘宗怀,雷志斌.碳海绵上电化学沉积Fe2O3纳米片及其增强电容性能[J].物理化学学报,2020,36(2):157-164. 被引量:7
  • 2HARRIS G R,PRESTON R C,DEREGGI A S.The impact of piezoelectric PVDF on medical ultrasound exposure measurements,standards,and regulations[J].IEEE T Ultrason Ferrelectr,2000,47(6):1321-35.
  • 3NAKAMACHI E,UETSUJI Y,KURAMAE H,et al.Process crystallographic simulation for biocompatible piezoelectric material design and generation[J].Arch Comput Method E,2013,20(2):155-83.
  • 4FUKADA E.History and recent progress in piezoelectric polymers[J].IEEE T Ultrason Ferrelectr,2000,47(6):1277-90.
  • 5MENG Y,YI W J.Application of a PVDF-based stress gauge in determining dynamic stress-strain curves of concrete under impact testing[J].Smart Mater Struct,2011,20(6):
  • 6CAUDA V,CANAVESE G,STASSI S.Nanostructured piezoelectric polymers[J].J Appl Polym Sci,2015,132(13):
  • 7SHU F F.Application of PVDF piezoelectric-film sensor to plantar pressure measurement[J].Res Prog Mod Technol Silk,Text Mech,2007,322-6.
  • 8TONAZZINI I,BYSTRENOVA E,CHELLI B,et al.Human neuronal SHSY5Y cells on PVDF:PTr FE copolymer thin films[J].Adv Eng Mater,2015,17(7):1051-6.
  • 9LI F,LIU W T,STEFANINI C,et al.A Novel bioinspired PVDF micro/nano hair receptor for a robot sensing system[J].Sensor,2010,10(1):994-1011.
  • 10SHARMA T,AROOM K,NAIK S,et al.Flexible thin-film PVDF-Tr Fe based pressure sensor for smart catheter applications[J].Ann Biomed Eng,2013,41(4):744-51.

共引文献131

同被引文献5

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部