期刊文献+

一种基于改进二进制粒子群的工作流云调度算法 被引量:2

A Workflow Cloud Scheduling Algorithm Based on Improved Binary Particle Swarm Optimization
下载PDF
导出
摘要 针对批处理科学工作流这一类应用,解决云环境中任务分配问题,从而有效降低成本,提高资源利用率,提出了一种改进的二进制粒子群算法.尽管传统的二进制粒子群算法具有很强的全局探测能力,但难以收敛于全局最优位置,而且随着迭代次数的不断增加,后期的搜索能力差.本文对粒子的更新公式进行修改,改善原始二进制粒子群算法的收敛性,提高了最优解的探测能力.实验结果表明,该算法所得最优解具有更好的实际调度时间和更少的资源租赁成本. An improved binary particle swarm optimization algorithm is proposed in this article to solve the problem of task allocation in cloud environment so as to effectively reduce cost and improve resource utilization.Although the traditionalbinary particle swarm optimization algorithm has strong global detection capability,it is difficult to converge to the global optimal location.Moreover,with the increase of iteration times,the search capability in the later stage is poor.In the article,the particle updating formula was modified to improve the convergence of the original binary particle swarm optimization algorithm and improve the detection ability of the optimal solution.The experimental results showed that the optimal solution obtained by the algorithm had better actual scheduling time and less resource leasing cost.
作者 熊聪聪 高萌 赵青 徐丹滢 XIONG Congcong;GAO Meng;ZHAO Qing;XU Danying(College of Artificial Intelligence,Tianjin University of Science&Technology,Tianjin 300457,China)
出处 《天津科技大学学报》 CAS 2021年第4期61-66,共6页 Journal of Tianjin University of Science & Technology
基金 国家自然科学基金青年项目(11803022) 天津市科委应用基础与前沿技术研究计划项目(18JCQNJC69800)。
关键词 云计算 任务调度 二进制粒子群算法 批处理科学工作流 cloud computing tasks scheduling binary particle swarm optimization algorithm batch science workflow
  • 相关文献

参考文献4

二级参考文献46

  • 1李宁,邹彤,孙德宝.带时间窗车辆路径问题的粒子群算法[J].系统工程理论与实践,2004,24(4):130-135. 被引量:60
  • 2王启付,王战江,王书亭.一种动态改变惯性权重的粒子群优化算法[J].中国机械工程,2005,16(11):945-948. 被引量:80
  • 3钟石泉,贺国光.有时间窗约束车辆调度优化的一种禁忌算法[J].系统工程理论方法应用,2005,14(6):522-526. 被引量:35
  • 4崔红梅,朱庆保.微粒群算法的参数选择及收敛性分析[J].计算机工程与应用,2007,43(23):89-91. 被引量:33
  • 5Eberhart R, Kennedy J. A new optimizer using particle swarm theory. Proceedings of the 6^th International Symposium on Micro Machine and Human Science. Nagoya, Japan, 1995,39-43.
  • 6Kennedy J, Eberhart R. Particle swarm optimization. IEEE International Conference on Neural Networks. Piscataway, New Jersy: IEEE Service Center, 1995, 1942-1948.
  • 7Shi Y, Eberhart R. A modified particle swarm optimizer. IEEE International Conference on Evolutionary Computation. New Jersy: IEEE Press, 1998, 69-73.
  • 8Aler B, Vincent J, Anyakoha C. A review of particle swarm optimization. Natural Computing, 2008, 7(3):109-124.
  • 9LiuJ H, FanXP, QuZH. An improvedparticle swarm optimization with mutation based on similarity. The 3^rd International Conference on Natural Computation. Haikou, China, 2007,9 : 824-828.
  • 10Kennedy J, Eberhart R. A discrete binary version of the particle swarm algorithm. Proceeding of the World Multieonference on Systemics, Cybernetics and Informaties. New Jersy: Piseataway, 1997, 4104-4109.

共引文献76

同被引文献17

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部