期刊文献+

基于比例分配的多目标粒子群改进研究 被引量:2

Research on Improvement of Multi-Objective Particle Swarm Based on Proportional Distribution
下载PDF
导出
摘要 针对粒子群算法存在收敛性差、容易陷入局部最优等特点,提出了一种基于比例分配的多目标粒子群改进研究(PDMOPSO)。利用比例分配机制,使个体有针对性地选取全局最优进行有效学习;同时采用网格划分和余弦距离策略动态维护和更新外部存档,有利于非支配解集靠近真实的Pareto前沿;最后,分别使用高引用经典改进的粒子群算法在9个典型测试函数上进行仿真实验。实验结果表明,PDMOPSO算法是一种非常具有竞争力的算法,它在大多数测试函数上优于比较算法的性能。 In order to solve the problemthat particle swarmoptimization is easy to be trapped in local optimum,low convergence precision,a multi-objective particle swarm improvement research based on proportional distribution(PDMOPSO)is proposed.The proportional distribution mechanism was used to enable individuals to select the global optimum for effective learning in a targeted manner.At the same time,the grid division and cosine distance strategy are used to dynamically maintain and update the external archive,which is beneficial to the non-dominated solution set close to the real Pareto front.Finally,simulation experiments were carried out on 9 typical test functions using the classic improved particle swarmalgorithmthat was highly cited.Experimental results showthat the PDMOPSO algorithmis a very competitive algorithm,and it outperforms the comparison algorithmin most test functions.
作者 李娜娜 舒小丽 刘衍民 LI Na-na;SHU Xiao-li;LIU Yan-min(School of Data Science and Information Engineering,Guizhou Minzu University,Guiyang 550025,China;College of Mathematics,Zunyi Normal University,Zunyi 563006,China)
出处 《遵义师范学院学报》 2021年第4期101-105,共5页 Journal of Zunyi Normal University
基金 国家自然科学基金项目(71461027) 贵州省科技创新人才团队项目(黔科合平台人才[2016]5619)。
关键词 比例分配 多目标优化 粒子群算法 余弦距离 proportional distribution multi-objective optimization particle swarm optimization cosine distance
  • 相关文献

参考文献2

二级参考文献4

共引文献29

同被引文献23

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部