期刊文献+

Advances in optical engineering for future telescopes 被引量:10

下载PDF
导出
摘要 Significant optical engineering advances at the University of Arizona are being made for design, fabrication, and construction of next generation astronomical telescopes. This summary review paper focuses on the technological advances in three key areas. First is the optical fabrication technique used for constructing next-generation telescope mirrors. Advances in ground-based telescope control and instrumentation comprise the second area of development. This includes active alignment of the laser truss-based Large Binocular Telescope(LBT) prime focus camera, the new MOBIUS modular cross-dispersion spectroscopy unit used at the prime focal plane of the LBT, and topological pupil segment optimization. Lastly, future space telescope concepts and enabling technologies are discussed. Among these, the Nautilus space observatory requires challenging alignment of segmented multi-order diffractive elements. The OASIS terahertz space telescope presents unique challenges for characterizing the inflatable primary mirror, and the Hyperion space telescope pushes the limits of high spectral resolution, far-UV spectroscopy. The Coronagraphic Debris and Exoplanet Exploring Pioneer(CDEEP) is a Small Satellite(Small Sat) mission concept for high-contrast imaging of circumstellar disks and exoplanets using vector vortex coronagraph. These advances in optical engineering technologies will help mankind to probe, explore, and understand the scientific beauty of our universe.
出处 《Opto-Electronic Advances》 SCIE 2021年第6期20-43,共24页 光电进展(英文)
基金 the Gordon and Betty Moore Foundation for their financial support of the development of the MODElens and its enabling alignment technologies the II-VI Foundation Block-Gift,Technology Research Initiative Fund Optics/Imaging Program。
  • 相关文献

参考文献1

二级参考文献13

  • 1[1]Wilson S R,McNeil J R.Neutral ion beam figuring of large optical surfaces[J].SPIE,1987,818:320-324.
  • 2[2]Wilson S R,Reicher D W,McNeil J R.Surface figuring using neutral ion beams[J].SPIE,1988,966:74-81.
  • 3[3]Allen L N,Robert E K,Timothy S L.Surface error correction of a Keck 10 m telescope primary mirror segment by ion figuring[J].Advanced Optical Manufacturing and Testing Ⅱ,SPIE,1991,1531:192.
  • 4[4]Allen L N.Progress in ion figuring large optics[J].Laser-Induced Damage in Optical Materials,SPIE,1994,2428:237-247.
  • 5[5]Fruit M,Schindler A,Hansel T.Ion beam figuring of SiC mirrors provides ultimate WFE performances for any type of telescope[C]//EUROPTO Conference on Optical Fabrication and Testing.Berlin,Germany,1999,3739:142-154.
  • 6[6]Gailly P,Collette J P,Tock J P,et al.Ion beam figuring of small BK7 and Zerodur optics:Thermal effects[C]//EUROPTO Conference on Optical Fabrication and Testing.Berlin,Germany,1999,3739:124-131.
  • 7[7]Tock J P,Collette J P,Gailly P,et al.Figuring sequences on a super-smooth sample using ion beam technique[C]//EUROPTO Conference on Optical Fabrication and Testing.Berlin,Germany,1999,3739:132-141.
  • 8[8]Carnal C L,Egert C M,Hylton K W.Advanced matrix-based algorithm for ion beam milling of optical components[J].SPIE,1992,1752:54-62.
  • 9[9]Drueding T W,Bifano T G,Fawcett S C.Contouring algorithm for ion figuring[J].Precision Engineering,1995,17:10-21.
  • 10[10]Shanbhag P M,Feinberg M R,Sandri G,et al.Ion-beam machining of millimeter scale optics[J].Applied Optics,2000,39(4):599-611.

共引文献27

同被引文献63

引证文献10

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部