摘要
小麦在生长过程中发生倒伏会严重影响其产量,因此实时且准确地对小麦倒伏状况监测有很重要的意义。传统的方法采用手工方式生成数据集,不仅效率低、易出错,而且生成的数据集不准确。针对这一问题,本研究提出了一种基于图像处理的自动数据集生成方法。首先利用无人机在15、46和91 m三个高度采集图像数据;采集完数据后,根据无倒伏、倒伏面积<50%和倒伏面积>50%的标准对每一块地的小麦倒伏情况进行人工评估;采用三种机器学习(支持向量机、随机森林、K近邻)和三种深度学习(ResNet101、GoogLeNet、VGG16)算法对小麦倒伏检测情况进行分类。结果显示,ResNet101的分类结果优于随机森林,并且在91 m高度采集的数据分类精度并不低于在15 m高度采集的数据。本研究证明了针对在91 m高度采集的无人机图像,采用ResNet101对小麦倒伏率检测是一种有效的替代人工检测的方法,其检测精度达到了75%。
Wheat lodging is a negative factor affecting yield production.Obtaining timely and accurate wheat lodging information is critical.Using unmanned aerial systems(UASs)images for wheat lodging detection is a relatively new approach,in which researchers usually apply a manual method for dataset generation consisting of plot images.Considering the manual method being inefficient,inaccurate,and subjective,this study developed a new image pro-cessing-based approach for automatically generating individual field plot datasets.Images from wheat field trials at three flight heights(15,46,and 91 m)were collected and analyzed using machine learning(support vector machine,random forest,and K nearest neighbors)and deep learning(ResNet101,GoogLeNet,and VGG16)algorithms to test their performances on detecting levels of wheat lodging percentages:non-(0%),light(<50%),and severe(>50%)lodging.The results indicated that the images collected at 91 m(2.5 cm/pixel)flight height could yield a similar,even slightly higher,detection accuracy over the images collected at 46 m(1.2 cm/pixel)and 15 m(0.4 cm/pixel)UAS mission heights.Comparison of random forest and ResNet101 model results showed that ResNet101 resulted in more satisfactory performance(75%accuracy)with higher accuracy over random forest(71%accuracy).Thus,ResNet101 is a suitable model for wheat lodging ratio detection.This study recommends that UASs images collect-ed at the height of about 91 m(2.5 cm/pixel resolution)coupled with ResNet101 model is a useful and efficient ap-proach for wheat lodging ratio detection.
作者
Paulo FLORES
张昭
Paulo FLORES;ZHANG Zhao*(Department of Agricultural and Biosystems Engineering,North Dakota State University,Fargo,ND 58102,USA)
基金
North Dakota Agricultural Experiment Station Precision Agriculture Graduate Research Assistantship(6064-21660-001-32S)
USDAAgricultural Research Service Project(435589)。