期刊文献+

基于维数学习和二次插值的混沌飞蛾火焰优化算法 被引量:2

A Chaotic Moth Flame Optimization Algorithm Based on Dimension Learning and Quadratic Interpolation
原文传递
导出
摘要 针对K-means算法对初始聚类中心敏感和容易陷入局部最优的问题,首先提出一种基于维数学习和二次插值的飞蛾火焰优化算法以提高基本算法的求解精度和收敛速度,即采用Tent混沌映射产生多样性较好的初始种群,增强算法的全局搜索能力;对火焰位置采用维数学习策略生成更优良的火焰来指导飞蛾寻优,以提高算法的搜索效率;把二次插值引入基本飞蛾火焰算法,每次迭代利用二次函数的极值点产生新的飞蛾个体,增强算法的局部开发能力,更好地平衡算法的探索与开发能力,从而改善了解的精度.选取CEC 2017测试函数进行数值实验测试所提算法的性能,并与5个先进的元启发式算法比较,结果表明:所提出的算法具有更高的求解精度和更强的鲁棒性.然后,将改进的飞蛾火焰算法用来优化聚类中心的位置,5个UCI数据集的实验结果表明改进的算法适用于求解K-means聚类问题,且取得了好的聚类效果. Aiming at the problem that the K-means algorithm suffers from being sensitive to the initial cluster center and being easily trapped into local optimum,this paper first presents a chaotic moth flame optimization algorithm based on dimension learning and quadratic interpolation to improve the quality of solution and convergence rate of the basic algorithm.The Tent chaotic map is used to generate the initial population with better diversity to enhance the global searching ability of the algorithm.Dimension learning strategy for flame location generates better flame to guide the moth finding the optimal solution so that the searching efficiency of the algorithm is improved.The quadratic interpolation is introduced into the basic moth flame algorithm.The algorithm uses extreme point of quadratic function to generate new moth individual in each iteration,which enhances the local exploitation ability of the algorithm,and better balances the exploration and exploitation ability of the algorithm,so as to improve the accuracy of solution.The CEC 2017 test functions are used to verify the proposed algorithm compared with 5 state-of-art meta-heuristic algorithms.The experimental results show that the proposed algorithm has higher accuracy and stronger robustness than the compared algorithms.The better performance of the proposed algorithm is then employed for optimizing the location of cluster centers and is tested using five benchmark datasets available from UCI machine learning laboratory.The experimental results show that the improved algorithm is suitable for solving K-means clustering problem,and good clustering results are obtained.
作者 王秋萍 郭佳丽 王晓峰 WANG Qiuping;GUO Jiali;WANG Xiaofeng(Faculty of Sciences,Xi’an University of Technology,Xi’an 710054)
出处 《系统科学与数学》 CSCD 北大核心 2021年第5期1233-1244,共12页 Journal of Systems Science and Mathematical Sciences
基金 国家自然科学基金(61772416) 国家自然科学基金(61976176)资助课题。
关键词 飞蛾火焰优化算法 Tent混沌映射 维数学习 二次插值 K-MEANS聚类 Moth flame optimization algorithm tent chaotic map dimension learning quadratic interpolation K-means clustering
  • 相关文献

参考文献4

二级参考文献40

  • 1袁晓辉,王乘,张勇传,袁艳斌.粒子群优化算法在电力系统中的应用[J].电网技术,2004,28(19):14-19. 被引量:220
  • 2单梁,强浩,李军,王执铨.基于Tent映射的混沌优化算法[J].控制与决策,2005,20(2):179-182. 被引量:196
  • 3杨波,赵遵廉,陈允平,韩启业.一种求解最优潮流问题的改进粒子群优化算法[J].电网技术,2006,30(11):6-10. 被引量:19
  • 4Karaboga D. An idea based on honey bee swarm for numerical optimization[R]. Kayseri: Erciyes University, 2005.
  • 5Akay B. Performance analysis of artificial bee colony algorithm on numerical optimization problems[D]. Kayseri: Graduate School of Natural and Applied Sciences, Erciyes University, 2009.
  • 6Akay B, Karaboga D. A modified artificial bee colony algorithm for real-parameter optimization[J]. Information Sciences, 2012, 192(6): 120-142.
  • 7Zhu G P, Sam K. Gbestguided artificial bee colony algorithm for numerical function optimization[J]. Applied Mathematics and Computation, 2010, 217(7): 3166-3173.
  • 8Alatas B. Chaotic bee colony algorithms for global numerical optimization[J]. Expert Systems with Applications, 2010, 37(8): 5682-5687.
  • 9Kennedy J, Eberhart R C. Particle swarm optimization[C]. Proc of IEEE Int Conf on Neural Networks. Piscataway, 1995: 1942-1948.
  • 10Jia D L, Zheng G X, Qu B Y, et al. A hybrid particle swarm optimization algorithm for high-dimensional problems[J]. Computers and Industrial Engineering, 2011, 61(4): 1117- 1122.

共引文献108

同被引文献13

引证文献2

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部