摘要
提出了基于动力学模型的重载轮式移动机器人在工作空间受限工况下的路径跟踪滑模预测控制方法。根据重载移动机器人结构,建立机器人运动学模型和动力学建模,标定出位置误差和姿态角误差;通过泰勒公式对非线性动力学方程线性化,然后利用有限差分法对线性系统进行离散化,再利用全局稳定指数趋近律控制器的位姿误差进行预滑模调节,设计了重载移动机器人的动力学滑模预测控制器;采用CarSim和Matlab对固定速度、不同速度、固定速度下滑模预测控制与预测控制及扰动等情况下的滑模预测控制器进行联合仿真,验证了机器人滑模预测控制器的路径跟踪控制可行性与有效性。结果表明:基于动力学模型的滑模预测控制方法,结合了滑模控制和预测控制的优点,有效提高了重载移动机器人路径跟踪的速度和稳定性。
Aiming at the problem of path tracking control of heavy-duty mobile robot under the condition of limited workspace,a sliding mode predictive control method for path tracking of heavy-duty wheeled mobile robot based on dynamic model was proposed.According to the analysis of the structure of the heavy-duty mobile robot,the kinematics model and dynamics model of the robot were established,and the position error and attitude angle error were calibrated;The nonlinear dynamic equation was linearized by Taylor formula,then the linear system was discretized by finite difference method,the position and pose errors of the global stability exponential reaching law controller were pre-sliding mode adjusted;The simulation of sliding mode predictive controller under the conditions of fixed speed,different speed,comparison of sliding mode predictive control and predictive control for fixed speed and disturbance was carried out by using CarSim and Matlab simulation,which verifies the feasibility and effectiveness of path tracking control of sliding mode predictive controller for robot.The results show that the proposed sliding mode predictive control method based on dynamic model combines the advantages of sliding mode control and predictive control,and it effectively improves the speed and stability of path tracking of heavy-duty mobile robot.
作者
陈勇
刘哲
乔健
卢清华
CHEN Yong;LIU Zhe;QIAO Jian;LU Qinghua(School of Mechatronic Engineering and Automation,Foshan University,Foshan 528225,China)
出处
《兵器装备工程学报》
CSCD
北大核心
2021年第8期214-220,共7页
Journal of Ordnance Equipment Engineering
基金
国家重点研发计划项目(2018YFB1308000)
广东省科技计划项目(2017A010102018)
广东省普通高校特色创新项目(2017KTSCX190)。
关键词
重载移动机器人
运动学
动力学
预测控制
滑模控制
路径跟踪
heavy-duty mobile robot
kinematics
dynamics
predictive control
sliding mode control
path tracing