期刊文献+

多径环境下联合时间反演和PCA降维的阵列幅相误差校正 被引量:6

Gain and phase errors calibration for joint time reversal and PCA dimensionality reduction over multipath environment
下载PDF
导出
摘要 针对多径环境下信号源相干导致阵列幅相误差校正不准确的问题,提出了一种联合时间反演和主成分分析的阵列幅相误差校正算法。所提算法利用时间反演的空时同步聚焦特性获取目标的回传矩阵信号以抑制多径效应并降低信号源相干性。时间反演的引入使阵列接收到的回传信号矩阵维度增大,从而增加了算法的计算复杂度,因此借助主成分分析思想对修正后的时间反演回传矩阵进行降维重构以降低算法的计算复杂度。仿真结果表明,在多径环境下,所提算法能够以较低的计算复杂度实现对阵列幅相误差的有效校正。 Aiming at the problem of inaccurate calibration of the array gain and phase errors caused by the signal source coherence in the multipath environment,a combination of time reversal(TR)and principal component analysis(PCA)calibration algorithm was proposed.The space-time synchronization focusing characteristic of TR was applied to obtain the return signal matrix of the target to suppress the multipath effect and reduce the signal source coherence.However,in view of the problem that the introduction of TR would make the dimension of the return signal matrix received by the ar-ray larger and increase the calculation complexity of the algorithm,PCA was utilized to implement dimensionality reduc-tion reconstruction on the revised TR return signal matrix to reduce the computational complexity.The simulation results show that the proposed algorithm can effectively calibrate the gain and phase errors of the array with lower computational complexity in a multipath environment.
作者 李方伟 鲁佳文 王明月 LI Fangwei;LU Jiawen;WANG Mingyue(School of Communication and Information Engineering,Chongqing University of Posts and Telecommunications,Chongqing 400065,China)
出处 《通信学报》 EI CSCD 北大核心 2021年第8期111-119,共9页 Journal on Communications
基金 国家自然科学基金资助项目(No.61771084) 重庆市教委科学技术基金资助项目(No.KJQN201800834)。
关键词 多径效应 时间反演 幅相误差校正 主成分分析 multipath effect time reversal gain and phase errors calibration principal component analysis
  • 相关文献

参考文献3

二级参考文献30

  • 1高火涛,李咏絮,郑霞.天线阵互耦系数的估计[J].通信学报,2005,26(4):19-23. 被引量:8
  • 2FISTASN, MANIKAS A. A new general global array calibration method[A]. Proc ICASSP[C]. Adelaide, Australia, 1994.73-76.
  • 3WEISS A J, FRIEDLANDER B. Self-calibration for high-resolution array processing[A]. Advances in Spectrum and Array Processing[C]. NJ: Prentice-Hall, 1991.
  • 4FRIEDLANDER B, WEISS A J. Direction finding in the presence of mutual coupling [J]. IEEE Trans AP, 1991, 39(3): 273-284.
  • 5FLANAGAN B P, BELL K L. Improved array self-calibration with large sensor position errors for closed space sources[A]. Proc 2000 Sensor Array and Multichannel workshop[C]. Cambridge, MA, 2000. 484-488.
  • 6SEE C M S, POH B K. Parametric sensor array calibration using measured steering vectors of uncertain locations[J]. IEEE Trans SP,1999, 47 (4): 1133-1137.
  • 7WANG B H, WANG Y L, CHEN H. Weighted spatial smoothing for direction-of-arrival estimation of coherent signals[A].Proceedings of IEEE Antennas and Propagation Society Internationai Symposium[C]. San Antonio, Texas, USA, 2002.668-671.
  • 8WANG B H, WANG Y L, CHEN H. A new criterion for DOA estimation of coherent sources based on weighted spatial smoothing[A].Proceedings of IEEE Antennas and Propagation Society International Symposium[C]. Columbus, OH, USA, 2003.276-279.
  • 9SHAN T J, WAX M, KAILATH T. On spatial smoothing for direction-of-arrival estimation of coherent signals[J]. IEEE Trans ASSP,1985, 33(4): 806-811.
  • 10ICHALEWICZ Z M. Genetic Algorithm +Data Structures=Evolution Program [M]. Berlin Heidelberg: Springer-Verlag, 1996.

共引文献30

同被引文献76

引证文献6

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部