期刊文献+

在线目标分类及自适应模板更新的孪生网络跟踪算法 被引量:2

Tracking algorithm of Siamese network based on online target classification and adaptive template update
下载PDF
导出
摘要 针对孪生网络跟踪算法在离线训练阶段学习被跟踪目标和其他对象的嵌入式特征,而这些特征缺少特定于目标的上下文信息,使跟踪算法的稳健性较差的问题,以SiamRPN++作为基准算法,提出了在线目标分类及自适应模板更新的孪生网络跟踪算法。首先,在离线训练阶段设计了互相关特征图监督模块,以学习更具判别力的嵌入式特征;其次,在线跟踪阶段设计了包含注意力机制的在线目标分类模块,在该模块中使用在线滤波器更新策略滤除背景噪声干扰;最后,设计了一种自适应模板更新模块,使用UpdateNet更新目标模板信息。在VOT2018、VOT2019这2个标准数据集上的实验结果验证了所提算法的有效性,相比基准算法SiamRPN++分别带来13.5%和18.2%(EAO)的性能提升。 Aiming at the problem that tracking algorithm of Siamese network learned the embedded features of the tracked target and the object in the offline training stage,and these embedded features often lacked the target-specific context information,which made these tracking algorithms less robust,a tracking algorithm of the Siamese network based on online target classification and adaptive template update was proposed,which used SiamRPN++as the baseline algorithm.Firstly,a cross-correlation feature map supervision module for classification was designed in the offline train-ing phase to learn more discriminative embedded features.Secondly,an online target classification module that included an attention mechanism in the online tracking phase was designed,and the online update filter strategy in the module was used to filter out the background noise.Finally,an adaptive template update module was designed to update the target template information using the UpdateNet.The results of experiments on VOT2018 and VOT2019 datasets verify the ef-fectiveness of the proposed algorithm,which brings 13.5%and 18.2%(EAO)improvement respectively compared with the baseline algorithm SiamRPN++.
作者 陈志旺 张忠新 宋娟 雷海鹏 彭勇 CHEN Zhiwang;ZHANG Zhongxin;SONG Juan;LEI Haipeng;PENG Yong(Key Lab of Industrial Computer Control Engineering of Hebei Province,Yanshan University,Qinhuangdao 066004,China;Jiamusi Electric Power Company,State Grid Heilongjiang Electric Power Co.,Ltd.,Jiamusi 154002,China;School of Electrical Engineering,Yanshan University,Qinhuangdao 066004,China)
出处 《通信学报》 EI CSCD 北大核心 2021年第8期151-163,共13页 Journal on Communications
基金 国家自然科学基金资助项目(No.61573305) 河北省自然科学基金资助项目(No.F2019203511)。
关键词 机器视觉 目标跟踪 孪生网络 目标分类 自适应模板更新 machine vision object tracking Siamese network object classification adaptive template update
  • 相关文献

参考文献1

共引文献12

同被引文献29

引证文献2

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部