期刊文献+

深度聚类算法综述 被引量:4

Review of Deep Clustering Algorithms
下载PDF
导出
摘要 聚类是机器学习的核心任务之一。聚类效果高度依赖于数据的特征表示。一个好的特征表示能够大幅度提高聚类效果,因此经典聚类算法使用特征提取算法提取一个利于聚类的特征表示。特征提取算法与聚类算法相互独立,导致特征提取与聚类算法脱钩。近些年,基于深度神经网络的聚类算法联合优化了特征提取过程与聚类过程,使用神经网络提取聚类导向的特征表示。目前,基于深度神经网络的聚类算法已经证明了其优越性。因此,全面回顾现有的深度聚类算法,并从神经网络的角度出发对现有深度聚类算法进行分类。 Clustering is one of the core tasks of machine learning. The clustering effect is highly dependent on the feature representation of data. A good feature representation can greatly improve the clustering effect, so the classical clustering algorithm uses feature extraction algorithm to extract a feature representation that is conducive to clustering. Feature extraction algorithm and clustering algorithm are independent of each other, which lead to the decoupling of feature extraction and clustering algorithm. In recent years, clustering algorithms based on deep neural networks optimize the feature extraction process and clustering process, and use neural network to extract the feature representation that is conducive to clustering. At present, the clustering algorithm based on deep neural network has proved its superiority. This paper reviews the existing deep clustering algorithms, and classifies the existing deep clustering algorithms from the perspective of neural networks.
作者 邓祥 俞璐 DENG Xiang;YU Lu(Army Engineering University of PLA,Nanjing Jiangsu 210007,China)
机构地区 陆军工程大学
出处 《通信技术》 2021年第8期1807-1814,共8页 Communications Technology
关键词 聚类 深度聚类 模式识别 深度学习 clustering deep clustering pattern classification deep learning
  • 相关文献

参考文献2

二级参考文献15

  • 1杨盛春,贾林祥.神经网络内监督学习和无监督学习之比较[J].徐州建筑职业技术学院学报,2006,6(3):55-58. 被引量:5
  • 2李和平,胡占义,吴毅红,吴福朝.基于半监督学习的行为建模与异常检测[J].软件学报,2007,18(3):527-537. 被引量:30
  • 3Chen M S.Data mining:an overview from database perspective[].IEEE Transactions on Knowledge and Data Engineering.1996
  • 4Zhang T,Ramakrishnan R,Livny M.BIRCH: An efficient data clustering method for very large databases[].Proceedings of ACM-SIGMOD International Conference on Management of Data.1996
  • 5Ng R,Han J.Efficient and Effective Clustering Methods for Spatial Data Mining. Proc. 1994 Int. Conf. Very Large Data Bases (VLDB’ 94) . 1994
  • 6Tan Pang-ning,Steinbach M.Introduction to Data Mining. . 2010
  • 7Chen Y,Tu L.Density-Based Clustering for Real-Time Stream Data. Proceedings of the 13th ACM SIGKDD International Conference of Knowledge Discovery and Data Mining . 2009
  • 8Spivak G.Victory in Limbo:Imagism. . 2010
  • 9陈斌,陈松灿,潘志松,李斌.异常检测综述[J].山东大学学报(工学版),2009,39(6):13-23. 被引量:41
  • 10孙光福,吴乐,刘淇,朱琛,陈恩红.基于时序行为的协同过滤推荐算法[J].软件学报,2013,24(11):2721-2733. 被引量:163

共引文献248

同被引文献24

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部