期刊文献+

基于改进核密度估计的电动出租车快速充电行为研究 被引量:6

Fast Charging Behavior of Electric Taxi Based on Improved Kernel Density Estimation
下载PDF
导出
摘要 电动汽车充电行为研究是充电负荷时空分布预测、充电基础设施规划和有序充电管理的基础。本文基于上海市电动出租车的实测数据,划分充电片段并提取快速充电行为特征变量,开展相关性分析以揭示变量之间的内在相关性,从工作日和休息日两个时间维度揭示快速充电行为规律,提出一种基于扩散方程的自适应扩散核密度估计模型应用于快速充电行为特征变量的概率建模并使用拟合优度检验指标验证该模型的有效性。研究结果表明:电动出租车的快速充电行为在工作日和休息日具有明显的差异性,自适应扩散核密度估计模型可使电动汽车充电行为特征变量的概率建模更加准确,且具有更高的拟合精度。 Charging behavior of electric vehicle(EV)is the basis of spatial-temporal distribution prediction of charging load,charging infrastructure planning and vehicle charging management.This paper collected the electric taxis charging data in Shanghai and extracted the characteristic variables of fast charging behavior for the defined charging segments.The correlation analysis was carried out to reveal the intrinsic relationship between variables and the law of fast charging behavior for both weekday and weekend study periods.An adaptive diffusion kernel density estimation model(ADKDE)was proposed on the basis of the diffusion equation and applied to the probability estimation of characteristic variables of fast charging behavior.The goodness of fit test was performed to verify the effectiveness of the ADKDE model.The results indicate that the fast-charging behavior of electric taxis is significantly different between weekday and weekend.The proposed ADKDE model can improve the accuracy of the probability modeling of the EV charging behavior and the accuracy of model fitting.
作者 田晟 曾莉莉 TIAN Sheng;ZENG Li-li(School of Civil Engineering and Transportation,South China University of Technology,Guangzhou 510640,China)
出处 《交通运输系统工程与信息》 EI CSCD 北大核心 2021年第4期221-229,共9页 Journal of Transportation Systems Engineering and Information Technology
基金 广东省自然科学基金(2021A1515011587,2020A1515010382)。
关键词 城市交通 电动出租车 快速充电行为 相关性分析 自适应扩散核密度估计 拟合优度检验 urban traffic electric taxi fast charging behavior correlation analysis adaptive diffusion kernel density estimation goodness of fit test
  • 相关文献

参考文献1

二级参考文献14

  • 1Pashajavid E, Golkar M A. Charging of plug-in electric vehicles: Stochastic modelling of load demand within domestic grids[C]//2012 20th Iranian Con- ference on Electrical Engineering, 2012: 535-539.
  • 2Leou Rong Stochastic impacts on Chun Lien, Lu Chan Nan. electric vehicle charging Ceng, Su analyses of distribution network[J]. IEEE Transa-ctions on Power Systems, 2014, 29(3): 1055-1063.
  • 3Dai Qian, Cai Tao, Duan Shanxu, et al. Stochastic modeling and forecasting of load demand for electric bus battery-swap station[J]. IEEE Transactions on Power Delivery, 2014, 29(4): 1909-1917.
  • 4Jeffery S Simonoff. Smoothing methods in stati- stics[M]. New York: Springer-Verlag, 1996.
  • 5Silverman B W. Density estimation for statistics and data analysis[M]. Boca Raton: CRC Press, 1986.
  • 6Mckay M D, Beckman R J, Conover W J. A comparison of three methods for selecting values of input variables in the analysis of output from a computer code[J]. Technimetrics, 1979, 21(2): 239- 245.
  • 7Young T, Mohlenkamp M J. Introduction to numerical methods and Matlab programming for engineers[M]. Athens: Ohio University, 2012.
  • 8Qin Zhilong, Li Wenyuan, Xiong Xiaofu. Estimating wind speed probability distribution using Kernel density method[J]. Electric Power Systems Research, 2011, 81(12): 2139-2146.
  • 9赵渊,张夏菲,周家启.电网可靠性评估的非参数多变量核密度估计负荷模型研究[J].中国电机工程学报,2009,29(31):27-33. 被引量:50
  • 10罗卓伟,胡泽春,宋永华,杨霞,占恺峤,吴俊阳.电动汽车充电负荷计算方法[J].电力系统自动化,2011,35(14):36-42. 被引量:365

共引文献17

同被引文献51

引证文献6

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部