摘要
基于Adomian分解法构造不同的迭代形式来求解平面库埃特流粘性发热问题,不同的迭代形式,ε的取值不同时,近似解的精度不同,从而说明迭代形式的选取在Adomian方法中的重要性,同时表明Adomian分解法的灵活性及求解微分方程组边值问题的有效性.
In this paper,based on the Adomian decomposition method to structure iteration of different form to solve the problem of viscous heating in plane couette flow,the accuracy of the approximate solution is different if the value of ε and the form of iteration are different,thus illustrate the importance of the selection of iterative forms in the Adomian method,at the same time shows the flexibility of the Adomian decomposition method and the effectiveness of the method to solve the system of differential equations boundary value problem.
作者
李丹丹
银山
LI Dan-dan;YIN Shan(College of Sciences,Inner Mongolia University of Technology,Hohhot 010051,China)
出处
《数学的实践与认识》
2021年第15期203-208,共6页
Mathematics in Practice and Theory
基金
内蒙古自治区面向基金项目(2016MS0109)
内蒙古自治区高等学校科研研究项目(NJZY094)
内蒙古工业大学重点项目(ZD201515)。
关键词
ADOMIAN分解法
微分方程组
平面库埃特流粘性发热问题
Adomian decomposition method
differential equations
the problem of viscous heating plane couette flow