期刊文献+

锂沉积过程中固体电解质间相开裂与自愈合的原位观察 被引量:4

In situ observation of cracking and self-healing of solid electrolyte interphases during lithium deposition
原文传递
导出
摘要 锂金属电池由于其超高的理论容量,被誉为是电池的"圣杯".然而,锂金属电池循环过程中树枝状或苔藓状锂的生长会使电池容量下降、电解液消耗、内部短路甚至起火爆炸.而直接追踪锂枝晶的生长仍然是一个巨大的挑战.本文报道了在CO_(2)气氛下利用环境电镜实时地观察了电化学诱导的锂沉积.研究发现单个锂沉积的形态强烈地受到固体电解质界面(SEI)开裂和自愈合的竞争过程的影响.当SEI膜的开裂速度超过自愈合时,锂晶须的定向生长占主导地位.相反地,当自愈大于裂纹时,圆形锂颗粒的各向同性生长将占主导地位.并且当SEI层是Li2O时,锂沉积的形貌只有球形,没有晶须的生成.因此,可以通过调节锂沉积速率和SEI成分来控制锂的形貌.本文还揭示了锂枝晶生长的一种新的"弱点"模式,这主要是由于在晶须截面上的Bardeen-Herring生长机制的作用.本研究对控制锂电池中锂枝晶的生长具有重要意义. The growth of lithium(Li)whiskers is detrimental to Li batteries.However,it remains a challenge to directly track Li whisker growth.Here we report in situ observations of electrochemically induced Li deposition under a CO_(2) atmosphere inside an environmental transmission electron microscope.We find that the morphology of individual Li deposits is strongly influenced by the competing processes of cracking and self-healing of the solid electrolyte interphase(SEI).When cracking overwhelms self-healing,the directional growth of Li whiskers predominates.In contrast,when self-healing dominates over cracking,the isotropic growth of round Li particles prevails.The Li deposition rate and SEI constituent can be tuned to control the Li morphologies.We reveal a new“weak-spot”mode of Li dendrite growth,which is attributed to the operation of the Bardeen-Herring growth mechanism in the whisker’s cross section.This work has implications for the control of Li dendrite growth in Li batteries.
作者 杨婷婷 李荟 唐永福 陈敬钊 叶宏俊 王宝林 张引 杜聪聪 姚景明 郭柏玉 沈同德 张利强 朱挺 黄建宇 Tingting Yang;Hui Li;Yongfu Tang;Jingzhao Chen;Hongjun Ye;Baolin Wang;Yin Zhang;Congcong Du;Jingming Yao;Baiyu Guo;Tongde Shen;Liqiang Zhang;Ting Zhu;Jianyu Huang(Clean Nano Energy Center,State Key Laboratory of Metastable Materials Science and Technology,Yanshan University,Qinhuangdao 066004,China;Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education,School of Materials Science and Engineering,Xiangtan University,Xiangtan 411105,China;Hebei Key Laboratory of Applied Chemistry,School of Environmental and Chemical Engineering,Yanshan University,Qinhuangdao 066004,China;State Key Laboratory for Mechanical Behavior of Materials,Xi’an Jiaotong University,Xi’an 710049,China;Woodruff School of Mechanical Engineering,Georgia Institute of Technology,Atlanta,GA 30332,USA)
出处 《Science Bulletin》 SCIE EI CSCD 2021年第17期1754-1763,M0004,共11页 科学通报(英文版)
基金 financial support by the National Key Research and Development Program of China (2018YFB0104300) National Natural Science Foundation of China (51772262, U20A20336, and 21935009) Natural Science Foundation of Hebei Province (B2020203037) Hunan Innovation Team (2018RS3091) financial support by Fok YingTong Education Foundation of China (171064) Natural Science Foundation of Hebei Province (B2018203297) financial support by the National Natural Science Foundation of China (52022088 and 51971245) Beijing Natural Science Foundation (2202046) financial support by the National Natural Science Foundation of China (51971195)。
关键词 固体电解质 理论容量 电池容量 SEI膜 锂电池 自愈合 起火爆炸 循环过程 Lithium whisker Solid electrolyte interphase Environmental transmission electron microscopy Lithium batteries
  • 相关文献

二级参考文献3

共引文献37

同被引文献9

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部