摘要
为了更加准确地刻画时间序列的长记忆性和厚尾性,文章建立了带有分数布朗运动增量平方项的GARCH模型,分析了模型的统计性质,给出了模型平稳解和各阶矩存在的条件,对模型的尾部性质和自相关函数的渐近性进行了讨论,证明了模型的长记忆性和厚尾性。最后通过数值模拟验证了理论结果的正确性。
In order to depict the long memory and fat tail of time series more accurately, this paper establishes a GARCH model with incremental square term of fractional Brownian motion, analyzes the statistical properties of the model, gives the conditions for the existence of stationary solutions and each moment of the model, and then discusses the tail properties of the model and the asymptotic behavior of autocorrelation function, proving the long memory and fat-tailed properties of the model. Finally,the paper verifies the correctness of the theoretical results by numerical simulation.
作者
李建辉
刘鑫
Li Jianhui;Liu Xin(College of Science,Xijing University,Xi’an 710123,China)
出处
《统计与决策》
CSSCI
北大核心
2021年第15期29-33,共5页
Statistics & Decision
基金
陕西省教育厅专项科研计划项目(19JK0907)
陕西省自然科学基础研究计划项目(2021JQ-867)。
关键词
异方差
分数布朗运动
长记忆性
厚尾性
heteroscedasticity
fractional Brownian motion
long memory
fat tail