摘要
文章研究了两种海面目标检测算法。由于海杂波的非高斯、非平稳和非均匀特性,传统的分布模型不能对海杂波进行有效的拟合,海杂波的概率密度函数会产生严重的拖尾现象。海杂波的非平稳性主要体现在纹理上,通过对纹理进行逆高斯建模,并估计纹理的最大后验值和最小均方误差值,对非平稳纹理进行归一化处理,实现海杂波协方差矩阵的平稳化。在广义似然比检测模型的基础上,提出了最大后验逆高斯广义似然比检测器(MAP-IGD-GLRT)和最小均方误差逆高斯广义似然比检测器(MMSE-IGD-GLRT)。经过仿真和实测数据实验验证,该文所提两种检测器均优于对比算法。
In this paper, two algorithms of target detection on sea surface are studied. Due to that sea clutter is non-Gaussian,non-stationary and heterogeneous, the traditional distribution models can’t fit the sea clutter effectively, and there is a serious tail of the probability density function of sea clutter. The texture is main component of the non-stationary sea clutter. Model the non-stationary texture with inverse Gaussian distribution(IGD), estimate the maximum a posteriori(MAP) and minimum mean square error(MMSE) of texture, normalize the non-stationary texture, and realize the stationary covariance matrix of sea clutter.Based on the generalized likelihood ratio(GLRT) model, two detectors, that is, MAP-IGD-GLRT detector and MMSE-IGD-GLRT detector, are proposed in the paper. Simulated and experimental results show that the two proposed detectors are superior to the comparisons.
作者
刘浩
Liu Hao(Nanjing University of Posts and Telecommunications,School of Telecommunications&Information Engineering,Nanjing,210003)
出处
《长江信息通信》
2021年第6期40-43,共4页
Changjiang Information & Communications
关键词
目标检测
广义似然比
最大后验协方差矩阵
最小均方误差协方差矩阵
target detection
generalized likelihood ratio
maximum a posteriori covariance matrix
minimum mean square error covariance matrix