期刊文献+

一种基于流形正则化随机配置网络的化工过程故障识别方法 被引量:3

A fault identification method of chemical process based on manifold regularized stochastic configuration network
下载PDF
导出
摘要 考虑到化工过程故障数据的复杂非线性特性和样本潜在的根本结构特征,提出了一种基于流形正则化随机配置网络的故障识别方法。该方法在经典随机配置网络的基础上,在嵌入流形约束的监督机制下随机选取隐含参数,逐个添加隐含节点,然后使用流形正则化最小二乘法计算隐含层的输出权值,保留了数据的重要几何特征,避免了信息冗余,有利于更好地识别出区别于不同类别的相关特征。在测试集上的实验表明,该方法对TE故障和半导体故障的识别准确率分别达到了87.72%和84.27%,均高于随机向量函数连接网络和随机配置网络方法。而且对于大部分故障类型,该方法的精确率和召回率较高,验证了所提方法进行故障识别的有效性和所建立模型的良好泛化能力。 Considering the complex nonlinear characteristics of chemical process faults and the underlying structural characteristics of samples,a fault identification method based on manifold regularized stochastic configuration network is proposed.Based on classical stochastic configuration network,this method randomly selects hidden parameters under the supervision mechanism of embedded manifold constraints to add hidden nodes one by one.Then,the output of hidden layer weights is calculated by manifold regularized least square method.It keeps the important geometric characteristics of data.The information redundancy is avoided and the relevant characteristics of different from different categories could be identified.Experimental results on test set show that the identification accuracy values of TE fault and semiconductor fault are 87.72%and 84.27%,respectively,which are higher than those of random vector function connection network and stochastic configuration network.In addition,for most fault types,the precision and recall rates of the proposed method are high.Results prove that the proposed method can effectively identify faults.The generalization ability of fault identification model is improved.
作者 潘承燕 徐进学 翁永鹏 Pan Chengyan;Xu Jinxue;Weng Yongpeng(Marine Electrical Engineering College,Dalian Maritime University,Dalian 116026,China)
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2021年第5期219-226,共8页 Chinese Journal of Scientific Instrument
关键词 随机配置网络 流形正则化 化工过程 故障识别 stochastic configuration network manifold regularization chemical processes fault identification
  • 相关文献

参考文献4

二级参考文献59

  • 1BUADES A,COLL B,MORELJ M.A review of image denoising algorithms with a new one[J].Multiscale Modeling and Simulation,2005,4(2):490-530.
  • 2ELAD M,AHARON M.Image denoising via learned dic tionaries and sparse representation[C].Proc.of IEEE Int.Conf.on Computer Vision and Pattern Recognition,2006,1:895-900.
  • 3ELAD M,AHARON M.Image denoising via sparse and redundant representations over learned dictionaries[J].IEEE Trans.on Image Processing,2006,15(12):3736-3745.
  • 4RUBINSTEIN R,BRUCKSTEIN A M,ELAD M.Dictionaries for sparse representation modeling[J].Proceedings of the IEEE,2010,98(6):1045-1057.
  • 5TO(S)IC I,FROSSARD P.Dictionary learning[J].IEEE Signal Process Magazine,2011,28(2):27-38.
  • 6CHEN S,DONOHO D L,SAUNDERS M A,Atomic decomposition by basis pursuit[J].SIAM Rev.,2001,43:129-159.
  • 7ELAD M,RUBINSTEIN R,ZIBULEVSKY M.Efficient implementation of the K-SVD algorithm using batch orthogonal matching pursuit[R].Technical Report-CS,Technion,2008.
  • 8BLUMENSATH T,DAVIES M.Iterative hard thresholding for compressed sensing[J].Appl.Comput.Harmonic Anal.,2009,27(3):265-274.
  • 9ZIBULEVSKY M,ELAD M.L1-L2 optimization in signal and image processing[J].IEEE Signal Process.Mag.,2010,27:76-88.
  • 10HE Y,GAN T,CHEN W,et al.Multi-stage image denoising based on correlation coefficient matching and sparse dictionary pruning[J].Signal Processing,2012,92(1):139-149.

共引文献259

同被引文献27

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部