期刊文献+

基于三位置超声波检测的改进强跟踪UKF-SLAM方法研究 被引量:4

Research on improved strong tracking UKF-SLAM method based on three-position ultrasonic detection
下载PDF
导出
摘要 针对移动机器人使用超声波传感器检测环境时存在干扰与数据不确定性问题,在分析超声波传感器工作原理和相邻位置检测数据的关联特性后,提出了基于三位置超声波检测的环境轮廓构建方法,利用超声波对室内环境进行建图;再使用改进强跟踪UKF-SLAM将超声波测量数据和移动机器人驱动模型进行滤波融合,得到更准确的位姿信息与地图特征。搭建仿真环境,并通过搭载有超声波传感器的全向轮移动机器人在实验环境内验证。仿真结果表明改进方法与其他算法相比,定位和地图构建的误差降低58.058%。室内实验中,获取环境特征的平均误差降低了50.2863%,进一步验证了提出算法的可行性与有效性。该方法对机器人同步定位与地图构建有一定参考价值。 For mobile robot using ultrasonic sensors detect interference existing in the environmental outline and the data uncertainty problems,based on the analysis of working principle of the ultrasonic sensors and the adjacent position after the correlation characteristics of detecting data,three position is proposed based on ultrasonic environmental detection method.First by using ultrasonic sensors to build the interior environment figure;Then the improved strong tracking UKF-SLAM method filters the ultrasonic measurement data and the driving model of mobile robot and gets more accurate pose information and map features after fusion optimization.In this study,setting up a simulation environment and assembling an Omni-directional mobile robot equipped with ultrasonic sensor in an indoor experimental to verify the feasibility and accuracy of algorithm.The simulation results show that the error in simultaneous localization and mapping was reduced by 58.058%that compared with the other algorithm.Furthermore,the average error of the robot’s acquisition of environmental features is reduced by 50.2863%.The feasibility and effectiveness of the improved algorithm proposed in this paper are further verified,and the method has certain reference value for Simultaneous Localization and Mapping.
作者 袁帅 吴健 曹阳 白岳岩 郭鹏程 Yuan Shuai;Wu Jian;Cao Yang;Bai Yueyan;Guo Pengcheng(College of Information&Control Engineering,Shenyang Jianzhu University,Shenyang 110168,China)
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2021年第5期261-269,共9页 Chinese Journal of Scientific Instrument
基金 国家自然科学基金(62073227) 辽宁省自然科学基金(20180520037,2019-ZD-0681)项目资助。
关键词 超声波检测技术 改进强跟踪UKF 同步定位与地图构建(SLAM) 相邻数据关联 ultrasonic detection technology improved strong tracking-UKF simultaneous localization and mapping(SLAM) adjacent data association
  • 相关文献

参考文献7

二级参考文献48

  • 1顾文华,周波,戴先中.基于ICP匹配算法的室内移动机器人定位[J].华中科技大学学报(自然科学版),2013,41(S1):262-266. 被引量:23
  • 2李劲.强跟踪Unscented滤波器及其在无源跟踪中的应用[J].电讯技术,2005,45(1):160-164. 被引量:2
  • 3黄立人,高砚龙,任立生.关于NEU(ENU)坐标系统[J].大地测量与地球动力学,2006,26(1):97-99. 被引量:42
  • 4石朝侠,洪炳镕,周彤,王燕清.大规模环境下的拓扑地图创建与导航[J].机器人,2007,29(5):433-438. 被引量:18
  • 5NEIRA J,DAVISON A J,LEONARD J J.Guest editori al special issue on visual SLAM[J].Robotics,IEEE Transactions on,2008,24(5):929-931.
  • 6KUC R.Biomimetic sensor and neuromorphic processing eliminate reverberation artifacts[J].Sensors Journal,IEEE,2007,7(3):361-369.
  • 7DJUGASH J,SINGH S,KANTOR G,et al.Range-only slam for robots operating cooperatively with sensor networks[C].Robotics and Automation,2006.ICRA 2006.Proceedings 2006 IEEE International Conference on.IEEE,2006:2078-2084.
  • 8WIJK O,CHRISTENSEN H I.Triangulation-based fusion of sensor data with application in robot pose tracking[J].IEEE Transactions on Robotics and Automation,2000,16(6):740-752.
  • 9CHOSET H,NAGATANI K,LAZAR N A.The arctransversal median algorithm:A geometric approach to increasing ultrasonic sensor azimuth accuracy[J].IEEE Transactions on Robotics and Automation,2003,19(3):513-521.
  • 10LEE S J,CHO D W,CHUNAG W K,et al.Feature based map building using sparse sensor data[C].IEEE/ RSJ International Conference on.IEEE,2005:1648-1652.

共引文献61

同被引文献32

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部