期刊文献+

一类具有扩散和时滞的Leslie-Gower反应捕食系统的动力学分析 被引量:1

Dynamical Analysis of a Diffusion Leslie-Gower Predator-prey Model with Time Delay
下载PDF
导出
摘要 文章研究了一类具有扩散和时滞的Leslie-Gower功能反应捕食模型.利用上下解方法讨论了该模型非负解的存在唯一性,借助比较原理获得了解的持久性,构造相应的Lyapunov函数证明了正平衡点的全局渐近稳定性,丰富了已有的结果. In this paper,we investigate a diffusion Leslie-Gowerpredator-prey model with delay.By using the upper and lower solutions method,the existence and uniqueness of its non-negative solutions are discussed,and the persistence of the solutions also are obtained with the comparative principle.Furthermore,the global asymptotic stability of the positiveequi-libriais studied with the direct Lyapunov method,and improves and extends some known results.
作者 蒲武军 PU Wu-jun(Department of Mathematics,Longnan Teachers College,Longnan 742500,China)
出处 《通化师范学院学报》 2021年第8期69-73,共5页 Journal of Tonghua Normal University
基金 陇南市2019年科技指导性计划项目(2019-ZD-14)。
关键词 Leslie-Gower泛函反应 扩散 时滞 全局渐近稳定性 Leslie-Gower functional response diffusion delay global asymptotic stability
  • 相关文献

参考文献7

二级参考文献20

  • 1Wang Kaifa, Wang Wendi. Propagation of HBV with spatial dependence[J]. Mathematical biosciences, 2007, 210(1): 78-95.
  • 2Xu Rui, Ma Zhien. An HBV model with diffusion and time delay[J]. Journal of Theoretical Biology, 2009, 257(3): 499-509.
  • 3Zhang Yiyi, Xu Zhiting. Dynamics of a diffusive HBV model with delayed Beddington- DeAngelis response[J]. Nonlinear Analysis: Real World Applications, 2014, 15: 118-139.
  • 4Hattaf K, Yousfi N. A generalized HBV model with diffusion and two delays[J]. Computers & Mathematics with Applications, 2015, 69(1): 31-40.
  • 5McCluskey C C, Yang Yu. Global stability of a diffusive virus dynamics model with general incidence function and time delay[J]. Nonlinear Analysis: Real World Applications, 2015, 25: 64-78.
  • 6Stancevic O, Angstmann C N, Murray~J M, et al. Turing patterns from dynamics of early HIV infection[J]. Bulletin of Mathematical Biology, 2013, 75(5): 774-795.
  • 7Lai Xiulan, Zou Xingfu. Repulsion effect on superinfecting virions by infected cells[J]. Bul- letin of Mathematical Biology, 2014, 76(11): 2806-2833.
  • 8Fan Yonghong, Li Wantong. Global asymptotic stability of a ratio-dependent predator-prey system with diffusion[J]. Journal of Computational and Applied Mathematics, 2006, 188(2): 205-227.
  • 9Hattaf K, Yousfi N. Global stability for reaction-diffusion equations in biology[J]. Computers & Mathematics with Applications, 2013, 66(8): 1488-1497.
  • 10Ko W, Ryu K. Qualitative analysis of a predator-prey model with Holling type II functional response incorporating a prey refuge[J]. Journal of Differential Equations, 2006, 231(2): 534- 550.

共引文献13

同被引文献6

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部