期刊文献+

一种时空卷积的步态识别方法 被引量:1

Gait recognition method based on spatial-temporal convolution
下载PDF
导出
摘要 由于步态识别的准确率会受到外部因素的影响,例如拍摄角度、行人穿着以及携带包的状态变化等,所以提出基于时空卷积的步态识别算法。该方法通过卷积神经网络提取步态特征,并通过对相邻帧进行重复提取来弥补当前帧丢失的信息,从而在步态轮廓序列图里挖掘更丰富的时空信息。最后,在CASIA-B数据集上对所提出的方法进行验证。实验结果表明,所提出的方法在正常行走、携带包和穿外套的情况下,Rank-1准确度都得到了很大的提升。 As a unique biological characteristic that can be recognized from a distance,gait has a wide application prospect in the fields of identity identification,public security and medical diagnosis.However,the accuracy of gait recognition will be affected by external factors,such as the shooting angle,the pedestrian’s wearing and the change in the status of carrying a bag.Based on the above problems,this paper puts forward the gait recognition method based on spatial-temporal convolution,which uses the convolution neural network to extract gait features,and employs the repeated extraction of the gait features of adjacent frames to make up for the missing information,so that more spatial-temporal information can be obtained.Finally,the proposed method is validated on the CASIA-B dataset.Experimental results show that the proposed method can improve the rank-1 accuracy when a pedestrian walks normally,carrying a bag and wearing a coat.
作者 许缓缓 李洪梅 李富余 孙学梅 XU Huanhuan;LI Hongmei;LI Fuyu;SUN Xuemei(Tianjin Key Laboratory of Autonomous Intelligence Technology and Systems,Tianjin 300387,China;School of Computer Science and Technology,Tiangong University,Tianjin 300387,China;Citigroup Services and Technology(China)Limited,Shanghai 201203,China)
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2021年第4期144-150,共7页 Journal of Xidian University
基金 天津市自然科学基金(19JCYBJC15400) 天津市科技计划项目(18JCTPJC61900,20YDTPJC01200)。
关键词 步态识别 时空卷积 步态特征 时空信息 gait recognition spatial-temporal convolution gait feature spatial-temporal information
  • 相关文献

参考文献2

二级参考文献23

  • 1Ghahramani Z,Jordan M I.Factorial Hidden Markov Models[J].Machine learning,1997,29(2):245-273.
  • 2Baum L E,Eagon J A.An Inequality with Applications to Statistical Estimation for Probabilistic Functions of Markov Processes and to a Model for Ecology[J].Bull Amer Math Soc,1967(73):360-363.
  • 3Logan B,Moreno P J.Factorial Hidden Markov Models for Speech Recognition:Preliminary Experiments[C] //Technical Report Series CFL 97/7.Cambridge:Cambridge Research Laboratory,1997.
  • 4Jacobs R A,Jiang W,Tanner M A.Factorial Hidden Markov Models and the Generalized Backfitting Algorithm[J].Neural computation,2002,14(10):2415-2437.
  • 5Reyes-Gomez M J,Raj B,Ellis D.Multi-channel Source Separation by Factorial HMMs[C] //Proc ICASSP.Hong Kong:IEEE,2003:1664-1667.
  • 6Deoras A N,Hasegawa-Johnson M.A Factorial HMM Approach to Simultaneous Recognition of Isolated Digits Spoken by Multiple Talkers on One Audio Channel[C] //Proc ICASSP.Montreal:IEEE,2004:1861-1864.
  • 7Kulic D,Takano W,Nakamura Y.Representability of Human Motions by Factorial Hidden Markov Models[C] //Proc IROS.Tokyo:IEEE,2007:2388-2393.
  • 8Lee D,Kulic D,Nakamura Y.Missing Motion Data Recovery Using Factorial Hidden Markov Models[C] //Proc ICRA.Tokyo:IEEE,2008:1722-1728.
  • 9Chen C,Liang J,Zhao H,et al.Factorial HMM and Parallel HMM for Gait Recognition[J].IEEE Trans on Systems,Man and Cybernetics-Part C:Applications and Reviews,2009,39(1):114-123.
  • 10Duh K.Jointly Labeling Multiple Sequences:a Factorial Hmm Approach[C] //Proc of the Association for Computational Lingustics Morristown.Ann Arbor:Student Research Workshop,2005:19-24.

共引文献3

同被引文献4

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部