期刊文献+

基于TensorFlow的恶意代码片段自动取证检测算法 被引量:4

Auto forensic detecting algorithms of malicious code fragment based on TensorFlow
下载PDF
导出
摘要 针对数字犯罪事件调查,在复杂、异构及底层的海量证据数据中恶意代码片段识别难的问题,通过分析TensorFlow深度学习模型结构及其特性,提出一种基于TensorFlow的恶意代码片段检测算法框架;通过分析深度学习算法训练流程及其机制,提出一种基于反向梯度训练的算法;为解决不同设备、不同文件系统的证据源中恶意代码片段特征提取问题,提出一种基于存储介质底层的二进制特征预处理算法;为进行反向传播训练,设计并实现了一个代码片段数据集制作算法。实验结果表明,基于TensorFlow的恶意代码片段检测算法针对不同存储介质以及证据存储容器中恶意代码片段的自动取证检测,综合评价指标F1达到0.922,并且和CloudStrike、Comodo、FireEye等杀毒引擎相比,该算法在处理底层代码片段数据方面具有绝对优势。 In order to auto detect the underlying malicious code fragments in complex,heterogeneous and massive evidence data about digital forensic investigation, a framework for malicious code fragment detecting algorithm based on TensorFlow was proposed by analyzing TensorFlow model and its characteristics. Back-propagation training algorithm was designed through the training progress of deep learning. The underlying binary feature pre-processing algorithm of malicious code fragment was discussed and proposed to address the problem about different devices and heterogeneous evidence sources from storage media and such as AFF forensic containers. An algorithm which used to generate data set about code fragments was designed and implemented. The experimental results show that the comprehensive evaluation index F1 of the method can reach 0.922, and compared with CloudStrike, Comodo, FireEye antivirus engines, the algorithm has obvious advantage in dealing with the underlying code fragment data from heterogeneous storage media.
作者 李炳龙 佟金龙 张宇 孙怡峰 王清贤 常朝稳 LI Binglong;TONG Jinlong;ZHANG Yu;SUN Yifeng;WANG Qingxian;CHANG Chaowen(College of Cryptographic Engineering,Information Engineering University,Zhengzhou 450001,China)
出处 《网络与信息安全学报》 2021年第4期154-163,共10页 Chinese Journal of Network and Information Security
基金 国家自然科学基金(60903220)。
关键词 自动取证 深度学习 全连接神经网络 恶意代码片段 auto forensics deep learning full connected network malicious code fragment
  • 相关文献

参考文献4

二级参考文献46

  • 1叶菲,罗景青,俞志富.一种改进的并行处理SVM学习算法[J].微电子学与计算机,2009,26(2):40-43. 被引量:6
  • 2陈世立,高野军.基于神经网络与贝叶斯的混合文本分类研究[J].情报杂志,2007,26(5):34-36. 被引量:3
  • 3白莉媛,黄晖,刘素华,阎秋玲.基于自助平均的朴素贝叶斯文本分类器[J].计算机工程,2007,33(15):190-192. 被引量:5
  • 4Bengio Y, Ducharme R, Vincent P, et al. A neural probabilistic language model [J]. Journal of Machine Learning Research, 2003, 3(2): 1137-1155.
  • 5Mikolov T, Kopecky J, Burger L, et al. Neural network based language models for highly inflective languages [C] // Proc of the 34th IEEE Int Conf on Acoustics, Speech and Signal. Piseataway, NJ: IEEE, 2009:4725-4728.
  • 6Boulanger-Lewandowski N, Bengio Y, Vincent P. Modeling temporal dependencies in high-dimensional sequences Application to polyphonic music generation and transcription [C] //Proc of the 29th Int Conf on Machine Learning. New York: ACM, 2012:590-598.
  • 7Bottou L. Stochastic gradient learning in neural networks [C] //Proc of Neuro Nimes 91, Nimes: EC2, 1991: 687-699.
  • 8Bengio Y, Frasconi P, Simard P. The problem of learning long-term dependencies in recurrent networks [C] //Proc of IEEE Int Conf on Neural Networks. Piscataway, NJ: IEEE, 1993: 1183-1188.
  • 9Xu W, Rundieky A. Can artificial neural networks learn language models? [C] //Proc of the 6th Int Conf on Spoken I,anguage Processing. Beijing, China: ISCA, 2000.
  • 10Bengio Y, Simard P, Fraseoni P. Learning long-term dependencies with gradient descent is difficult [C]//Proe of IEEE Trans on Neural Networks. Piseataway, NJ: IEEE, 1994:157-166.

共引文献69

同被引文献46

引证文献4

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部