期刊文献+

基于Adaboost-决策树算法的乳腺微钙化区域真假阳性检测 被引量:4

True-and false-positive detections of breast microcalcifications based on Adaboost-decision tree algorithm
下载PDF
导出
摘要 乳腺癌的早期症状在乳腺钼靶图像中主要表现为微钙化点,微钙化区域的真假阳性检测对于乳腺癌早期筛查具有重要意义。本研究选取DDSM图像进行实验,手动截取了400个疑似钙化区域。首先提取全部区域的Haralick纹理特征和灰度游程矩阵特征建立特征集,然后使用Adaboost算法集成决策树,构建强分类器AB-DT,对400个疑似钙化区域进行分类。实验发现当集成462棵决策树时,模型分类性能最佳。最后进行10折交叉验证,AB-DT算法达到了91.75%的准确率,91.75%的敏感性,91.79%的特异性,F1指数为0.9187。该模型在微钙化真假阳性检测上性能优越,可用于辅助乳腺微钙化点检测,具有一定的临床应用价值。 The early manifestation of breast cancer is mainly characterized by microcalcifications in mammograms.The trueand false-positive detections of microcalcifications are of great significance for the early screening of breast cancer.DDSM images were selected for the experiment,and 400 suspected calcification regions were manually intercepted.The feature set was firstly established by extracting Haralick texture features and grey-level run length matrix features of all regions;and then,Adaboost algorithm was integrated with decision tree to construct a strong classifier AB-DT for classifying 400 suspected calcification regions.It was found that the model classification performance was the best when 462 decision trees were integrated.Finally,10-fold cross-validation was conducted,and the results revealed that the accuracy,sensitivity and specificity of AB-DT algorithm reached 91.75%,91.75%and 91.79%,respectively,and that F1 score was 0.9187.The proposed model has superior performance in the true-and false-positive detections of microcalcifications,and it can be used to assist the detection of breast microcalcifications,which has certain clinical application value.
作者 申楠 邢素霞 何湘萍 潘子妍 王瑜 SHEN Nan;XING Suxia;HE Xiangping;PAN Ziyan;WANG Yu(School of Artificial Intelligence,Beijing Technology and Business University,Beijing 100048,China;Breast Disease Prevention and Control Center,Haidian Maternal and Child Health Hospital,Beijing 100080,China)
出处 《中国医学物理学杂志》 CSCD 2021年第8期940-945,共6页 Chinese Journal of Medical Physics
基金 国家自然科学基金(61671028) 国家重大科学研发子课题(ZLJC603-5-1)。
关键词 乳腺癌 Adaboost-决策树 微钙化 Haralick纹理特征 灰度游程矩阵 breast cancer Adaboost-decision tree microcalcification Haralick texture feature grey-level run length matrix
  • 相关文献

参考文献2

二级参考文献20

  • 1李树楠,万柏坤,马振鹤,王瑞平.基于小波变换的乳腺X线影像微钙化点感兴趣区域提取新技术[J].生物医学工程学杂志,2005,22(2):360-362. 被引量:7
  • 2文浩,马金盛,王玉慧.基于小波与统计学的乳腺微钙化点检测方法[J].计算机与数字工程,2006,34(10):57-59. 被引量:5
  • 3Jeraj R. Radiation characteristics of helical tomotherapy[ J ]. Med Phys, 2004, 31(2):396-404.
  • 4Staton RJ, Langen KM, Kupelian PA, et al. Dosimetric effects of rotational output variation and x-ray target degradation on helical tomotherapy plans [ J ]. Med Phys, 2009,36 ( 7 ) : 2881 - 2888.
  • 5Lee SK, Lo CS, Wang CM, et al. A computer-aided design mammJgraphy screening system for detection and classification of microcalcifications [ J ]. International journal of medical informatics, 2000, 60( 1 ) : 29-57.
  • 6Papadopoulos A, Fotiadis DI, Likas A. An automatic microcalclfication detection system based on a hybrid neural network classifier[ J ]. Artificial intelligence in Medicine, 2002, 25(2): 149-167.
  • 7Haralick RM, Shanmugam K, Dinstein IH. Textural features for !mage classification [ J]. Systems, Man and Cybernetics, IEEE Transactions on, 1973, (6) : 610-621.
  • 8Ulaby F T, Kouyate F, Brisco B, et al. Textural information in SAR images [ J]. IEEE Transactions on Geoscience and Remote Sensing, 1986, 24(2) : 235-245.
  • 9Duda RD, Hart PE. Use of the hough transformation to detect lines and curve in pictures [ J ]. Communications of the ACM, 1972,15(1) : 11-15.
  • 10鲁雯,宋莉,张光玉,李正美.基于神经网络技术在乳腺钼靶x片感兴趣区域的提取新方法[J].中国医学装备,2008,5(2):27-31. 被引量:3

共引文献16

同被引文献30

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部