期刊文献+

深度学习在脑胶质瘤影像学的研究进展 被引量:6

Advances in deep learning for brain glioma imaging
下载PDF
导出
摘要 深度学习是基于多层神经网络计算模型发现数据内复杂特征的一种深度网络,较多应用于医学图像的分割与分类中,在各类脑胶质瘤的研究中也有许多成果。本文就深度学习在脑胶质瘤的准确分割定位、组织遗传学特征预测及预后评估等方面展开综述,总结深度学习在脑胶质瘤影像图像分割与分类的研究进展,从而为胶质瘤患者的精准诊断、个体化治疗提供新思路。 Deep learning is a kind of deep network that can discover the inherent complex features of data based on a multilayer neural network computing model.It is mostly used in the segmentation and classification of medical images,and it also makes lots of achievements in the research of various types of gliomas.Herein the applications of deep learning in the accurate segmentation and positioning,prediction of tissue genetic features,and prognostic evaluation of brain gliomas are reviewed,and the recent advances in deep learning for image segmentation and classification of gliomas are summarized,so as to provide new ideas for the accurate diagnosis and individualized treatment of glioma patients.
作者 张斌 薛彩强 林晓强 景梦园 邓靓娜 韩涛 周俊林 ZHANG Bin;XUE Caiqiang;LIN Xiaoqiang;JING Mengyuan;DENG Liangna;HAN Tao;ZHOU Junlin(Department of Radiology,Lanzhou University Second Hospital/the Second Clinical Medical School,Lanzhou University/Key Laboratory of Medical Imaging of Gansu Province,Lanzhou 730030,China)
出处 《中国医学物理学杂志》 CSCD 2021年第8期1048-1052,共5页 Chinese Journal of Medical Physics
基金 国家自然科学基金(82071872,81772006) 兰州大学第二医院“萃英科技创新计划”应用基础研究项目(CY2017-MS03)。
关键词 深度学习 胶质瘤 影像学 综述 deep learning glioma imaging review
  • 相关文献

参考文献1

共引文献59

同被引文献34

引证文献6

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部