摘要
为制备具有高比表面积和分级多孔结构的碳材料来提高其用于电极的电荷存储能力,采用静电纺丝技术将钴金属有机骨架材料(ZIF-67)与聚丙烯腈(PAN)/聚甲基丙烯酸甲酯(PMMA)混合制备复合纳米纤维膜,然后对其进行高温炭化处理得到钴基分级多孔复合碳材料,表征了其结构和电化学性能,探究了ZIF-67负载量对复合碳材料结构和性能的影响。结果表明:负载ZIF-67的复合碳材料相对于单一碳材料具有较高的比表面积和丰富的中孔结构,当ZIF-67相对于PMMA的负载量为10%时,复合碳材料比表面积为259.814 m^(2)/g,中孔占比为68.8%,在1 A/g电流密度下的比电容可达151 F/g,是未负载ZIF-67的PAN/PMMA碳材料的3倍,且在2000次循环后,比电容保持率仍为84.8%。
In this research,carbon materials with high specific surface areas and hierarchical porous structures were prepared to improve the charge storage capacity of the electrode.Electrospinning technology was used to combine the cobalt metal organic framework materials(ZIF-67)with polyacrylonitrile(PAN)/polymethacrylate(PMMA)for fabricating the composite nanofiber membranes.Then the cobalt-based hierarchical porous composite carbon materials were obtained by high-temperature carbonization,and their characterization of structure and electrochemical performance were carried out.The effects of ZIF-67 loading amounts on the structure and performance of the electrode materials were explored.The results showed that the composite carbon materials loaded ZIF-67 had higher specific surface areas and richer mesoporous structures than a single carbon material.When the loading of ZIF-67 relative to PMMA was 10%,the specific surface area was 259.814 m^(2)/g,the proportion of mesopores was 68.8%,and the specific capacitance could reach 151 F/g at a current density of 1 A/g,which was 3 times of the PAN/PMMA carbon material without ZIF-67.Moreover,its specific capacitance retention rate reached 84.8%after 2000 cycles.
作者
叶成伟
汪屹
徐岚
YE Chengwei;WANG Yi;XU Lan(College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215123, China;National Engineering Laboratory for Modern Silk, Soochow University, Suzhou, Jiangsu 215123, China)
出处
《纺织学报》
EI
CAS
CSCD
北大核心
2021年第8期57-63,共7页
Journal of Textile Research
基金
国家自然科学基金项目(11672198)。
关键词
静电纺丝
金属有机骨架
分级多孔材料
电极材料
比电容
超级电容器
electrostatic spinning
metal organic framework
hierarchical porous material
electrode material
specific capacitance
supercapacitor