期刊文献+

计算机辅助多模态融合超声诊断乳腺良恶性肿瘤 被引量:12

Computer-aided multimodal fusion ultrasonic diagnosis of benign and malignant breast tumors
下载PDF
导出
摘要 目的观察利用深度学习(DL)融合常规超声和超声弹性成像诊断乳腺良、恶性肿瘤的效能。方法利用DL卷积神经网络(CNN)提取乳腺肿瘤超声灰阶与超声弹性特征,并进行多模态融合,评价融合弹性图像或弹性比值等不同信息方式对乳腺良、恶性肿瘤的诊断效能;绘制受试者工作特征(ROC)曲线,计算曲线下面积(AUC),评估多模态融合模型的诊断效能。结果多模态融合模型鉴别乳腺良、恶性肿物的效能优于单模态常规超声或弹性模型,其中融合灰阶与弹性图像模型鉴别诊断效能优于融合灰阶与弹性比值模型,分类准确率达93.51%,敏感度为94.88%,特异度为92.25%,AUC达0.975。结论计算机辅助多模态融合有助于提高超声对乳腺良、恶性肿瘤的诊断效能。 Objective To observe the efficacy of fusion of conventional ultrasound and ultrasonic elastography using deep learning(DL)for diagnosis of benign and malignant breast tumors.Methods Convolutional neural network(CNN)was used to extract the features of ultrasonic grayscale images and ultrasonic elastic images,and multimodal fusion was performed.The performances of fusion of elastic images or elastic ratio data and other different information methods in diagnosis of benign and malignant breast tumors were evaluated,respectively.Receiver operating characteristic(ROC)curves were drawn,and the areas under the curves(AUC)were calculated to further assess the efficacy of the models.Results The multimodal fusion models were superior to single modal of conventional ultrasound or elastic model for differentiating benign and malignant breast tumors.The fusion model of gray-scale image and elastic image was superior to that of gray-scale image and elastic ratio,with classification accuracy of 93.51%,sensitivity of 94.88%and specificity of 92.25%,and the AUC was 0.975.Conclusion Computer-aided multimodal fusion could help to increase the efficacy of ultrasonic diagnosis of benign and malignant breast tumors.
作者 王彤 何萍 苏畅 崔立刚 林伟军 王心怡 WANG Tong;HE Ping;SU Chang;CUI Ligang;LIN Weijun;WANG Xinyi(Ultrasonic Technique Center,Institute of Acoustics,Chinese Academy of Sciences,Beijing 100190,China;University of Chinese Academy of Sciences,Beijing 100049,China;Department of Ultrasound Diagnosis,Peking University Third Hospital,Beijing 100191,China;Center of Breast,Peking University Cancer Hospital&Institute,Key Laboratory of Carcinogenesis and Transformation Research,Beijing 100142,China)
出处 《中国医学影像技术》 CSCD 北大核心 2021年第8期1210-1213,共4页 Chinese Journal of Medical Imaging Technology
基金 国家重点研发计划(2018YFC0114900) 中国科学院青年创新促进会项目(2019024)。
关键词 乳腺肿瘤 超声检查 弹性成像技术 深度学习 多模态 breast neoplasms ultrasonography elasticity imaging techniques deep learning multimodality
  • 相关文献

参考文献5

二级参考文献61

  • 1罗葆明,欧冰,智慧,曾婕,杨海云.改良超声弹性成像评分标准在乳腺肿块鉴别诊断中的价值[J].现代临床医学生物工程学杂志,2006,12(5):396-398. 被引量:372
  • 2BENGIO Y, DELALLEAU O. On the expressive power of deep archi- tectures[ C ]//Proc of the 14th International Conference on Discovery Science. Berlin : Springer-Verlag, 2011 : 18 - 36.
  • 3BENGIO Y. Leaming deep architectures for AI[ J]. Foundations and Trends in Machine Learning ,2009,2 ( 1 ) : 1-127.
  • 4HINTON G,OSINDERO S,TEH Y. A fast learning algorithm for deep belief nets [ J ]. Neural Computation ,2006,18 (7) : 1527-1554.
  • 5BENGIO Y, LAMBLIN P, POPOVICI D, et al. Greedy layer-wise training of deep networks [ C ]//Proc of the 12th Annual Conference on Neural Information Processing System. 2006:153-160.
  • 6LECUN Y, BOTTOU L, BENGIO Y, et al. Gradient-based learning ap- plied to document recognition[ J]. Proceedings of the iEEE, 1998, 86( 11 ) :2278-2324.
  • 7VINCENT P, LAROCHELLE H, BENGIO Y, et al. Extracting and composing robust features with denoising autoencoders[ C ]//Proc of the 25th International Conference on Machine Learning. New York: ACM Press ,2008 : 1096-1103.
  • 8VINCENT P, LAROCHELLE H, LAJOIE I, et aL Stacked denoising autoencoders:learning useftd representations in a deep network with a local denoising criterion [ J ]. Journal of Machine Learning Re- search ,2010,11 ( 12 ) :3371-3408.
  • 9YU Dong, DENG Li. Deep convex net: a scalable architecture for speech pattern classification [ C]//Proc of the 12th Annual Confe-rence of International Speech Comunication Association. 2011 : 2285- 2288.
  • 10POON H, DOMINGOS P. Sum-product networks:a new deep architec- ture[ C ]//Proc of IEEE Intemational Conference on Computer Vi- sion. 2011:689-690.

共引文献682

同被引文献110

引证文献12

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部