摘要
为了提高船舶管加工车间的生产效率,考虑多种现实约束和优化目标,建立了多目标生产调度问题的数学模型。同时,根据果蝇优化算法的基本框架,结合Pareto优化理论的思想,设计和改进嗅觉搜索、视觉搜索及种群更新等多种策略,制定了多目标果蝇优化算法框架,提出了基于果蝇优化算法的求解方法,实现船舶管加工车间多目标生产调度问题的高效求解。通过与第二代非支配排序遗传算法(Non-dominated Sorting Genetic Algorithm II,NSGA-II)的对比实验,验证了所提方法的有效性。
In order to improve the production efficiency of the ship pipe processing workshop,a variety of realistic constraints and optimization goals were considered,a mathematical model for the multi-objective production scheduling problem of the ship pipe processing workshop was established.Meanwhile,according to the basic framework of the fruit fly optimization algorithm,combined with the ideas of Pareto optimization theory to design and improve multiple strategies such as olfactory search,visual search,and population update.A multi-objective fruit fly optimization algorithm framework was formulated and a method based on fruit fly optimization algorithm was proposed to solve the multi-objective production scheduling problem of ship pipe processing workshop efficiently.Its efficiency was validated by comparative experiment with Non-dominated Sorting Genetic Algorithm II(NSGA-II).
作者
鲁佳俊
高亮
侯国祥
LU Jiajun;GAO Liang;HOU Guoxiang(School of Naval Architecture and Ocean Engineering,Huazhong University of Science and Technology,Wuhan 430074,China;School of Mechanical Science and Engineering,Huazhong University of Science and Technology,Wuhan 430074,China)
出处
《现代制造工程》
CSCD
北大核心
2021年第8期8-19,共12页
Modern Manufacturing Engineering
基金
国家杰出青年科学基金项目(51825502)。
关键词
船舶管加工车间
生产调度
果蝇优化算法
多目标优化
资源约束
ship pipe processing workshop
production scheduling
fruit fly optimization algorithm
muti-objective optimization
resource constraints