摘要
以一客运专线为背景,采用周期图法计算桥梁段轨道高低不平顺功率谱密度,从频谱角度分析桥上轨道高低不平顺谱特征,利用动力学仿真与数值模拟探究轨道谱特征波长与下部结构的映射规律,分析周期性不平顺幅值对车辆动力响应的影响。结果表明:桥梁段轨道谱特征波长与桥梁、轨道板的结构有关;轨道高低不平顺谱中出现的特征波长由主要周期结构产生,波长符合1∶1/2∶…∶1/n的比例关系;次要周期结构在主要周期1/n处的分量有增益;轮重减载率、车体垂向加速度均与周期不平顺幅值正相关,轮重减载率在周期不平顺幅值达到6 mm时超出容许限值。
Taking a passenger dedicated railway as the background,the periodogram method was used to calculate the power spectral density of track vertical irregularity in the bridge section,analyze the track vertical irregularity spectral characteristics on the bridge from the perspective of spectrum,explore the mapping law between the track spectral characteristic wavelength and the substructure by using dynamic simulation and numerical simulation,and analyze the influence of periodic irregularity amplitude on vehicle dynamic response.The results show that the track spectral characteristic wavelength in bridge section is related to the structure of bridge and track plate.The characteristic wavelength in the track vertical irregularity spectrum is generated by the main periodic structure,and the wavelength conforms to the proportional relationship of 1∶1/2∶…∶1/n.The component of the secondary periodic structure at 1/n of the main period will have a certain gain.The wheel load reduction rate and the vertical acceleration of the vehicle body are positively correlated with the periodic irregularity amplitude.The wheel load reduction rate exceeds the allowable limit when the periodic irregularity amplitude reaches 6 mm.
作者
刘潇潇
李帅
陈嵘
王源
汪鑫
LIU Xiaoxiao;LI Shuai;CHEN Rong;WANG Yuan;WANG Xin(College of Civil Engineering,Southwest Jiaotong University,Chengdu 610031,China;Key Laboratory of High Speed Railway Engineering of Ministry of Education,Southwest Jiaotong University,Chengdu 610031,China;China Merchants Chongqing Communication Technology Research and Design Institute Co.Ltd.,Chongqing 400060,China)
出处
《铁道建筑》
北大核心
2021年第8期123-125,133,共4页
Railway Engineering
基金
国家自然科学基金(51778542)
国家杰出青年科学基金(51425804)。
关键词
轨道高低不平顺
桥梁
周期图法
功率谱密度
特征波长
主要周期结构
车辆动力响应
track vertical irregularity
bridge
periodogram method
power spectral density
characteristic wavelength
main periodic structure
vehicle dynamic response