期刊文献+

基于改进NSGA-Ⅲ算法的动态武器协同火力分配方法 被引量:12

Method for Dynamic Weapon Coordinative Firepower Distribution Based on Improved NSGA-Ⅲ Algorithm
下载PDF
导出
摘要 针对防御场景下的动态武器协同火力分配问题,将其转化为多目标约束组合优化问题,在考虑资源约束、可行性约束的前提下,以我方损失最小、消耗资源最小为原则,对敌方目标造成最大的伤害。基于此,在NSGA-Ⅲ算法的基础上提出基于A-NSGA-GKM算法的动态武器协同火力分配方法,通过遗传K均值聚类算法对初始参考点进行自动分组聚类,用聚类中心代替原参考点,引入基于惩罚的边界相交聚合函数代替原垂直距离,进一步提升原始算法的收敛性能,引入自适应机制保证优秀的解结构。最后,通过实验仿真表明所提优化算法具有较高的收敛性,该方法能够有效地解决动态武器协同火力分配优化问题。 Aiming at the problem of dynamic weapon coordinative firepower assignment in the defense scenario,it is transformed into multi-objective constrained combinatorial optimization problem.Under the premise of considering resource constraint and feasibility constraint,the principle is to cause maximum damage to enemy targets while with the cast of minimum loss and minimum consumption of resources on our side.Based on NSGA-Ⅲ algorithm,a new method for dynamic weapon coordinative firepower distribution based on A-NSGA-GKM algorithm has been proposed.The genetic K-means clustering algorithm is introduced to make automatic clustering of the initial reference points the cluster center is used to replace the original reference points the boundary intersecting aggregation function based on punishment is introduced to replace the original vertical distance,thereby the convergence performance of the original algorithm is further enhanced,the adaptive mechanism is introduced to ensure excellent solution structure.Finally,through experimental simulation,the results show that the proposed optimization algorithm has a higher convergence performance,and the proposed algorithm can solve the problem of dynamic weapon coordinative fire distribution effectively.
作者 于博文 吕明 YU Bo-wen;LYU Ming(Nanjing University of Science and Technology,Nanjing 210094,China)
机构地区 南京理工大学
出处 《火力与指挥控制》 CSCD 北大核心 2021年第8期71-77,82,共8页 Fire Control & Command Control
基金 江苏省自然科学基金(BK20180467) 南京理工大学科研基金资助项目。
关键词 作战决策 动态武器目标分配 多目标 非支配排序 自适应 遗传K均值聚类 operational decision making dynamic weapon target distribution multi-objective non-dominant sorting adaptive genetic K-means clustering
  • 相关文献

参考文献2

二级参考文献21

  • 1王向华,覃征,刘宇,史哲文.径向基神经网络解决威胁排序问题[J].系统仿真学报,2004,16(7):1576-1579. 被引量:30
  • 2韩瑞新,朱红胜,卢厚清,屈兵超,张宏军.舰艇编队防空火力基于改进遗传算法的分配方案[J].解放军理工大学学报(自然科学版),2006,7(1):46-50. 被引量:13
  • 3玄光男 程润伟.遗传算法与工程设计[M].北京:科学出版社,2000..
  • 4徐品高.防空体系的目标分配.现代防御技术,2001,15(3):133-178.
  • 5恩格尔伯里特.计算群体智能基础[M].谭营等,译.北京:清华大学出版社,2009,325-366.
  • 6Sahin M A, Leblebieioglu K. A standard expert system for weapon target assignment problem[C]//Proc, of the Interna tional Symposium on Performance Evaluation of Computer &- Telecommunication Systems, 2009 : 221 - 224.
  • 7Bai F, Chang T Q, Li Y. An improved niche-based adaptive ge netic algorithm for WTA problem solving[C]//Proe, of the In- ternational Conference on Computational Problem Solving, 2010: 27-30.
  • 8Fu T P, Liu Y S, Zeng J G, et al. An improved genetic & ant colo- ny optimization algorithm and its applications[J]. Lecture Notes in Control and Information Sciences, 2006, 344(1) : 229- 239.
  • 9Wang L, Wang H Y, Qiu Z M. An improved artificial immune algorithm for solving weapon-target assignment problem[C]// Proc. of the 7th World Congress on Intelligent Control and Automation, 2008, 8622 - 8625.
  • 10Thangaraj R, Pant M, Nagar A K. Maximization of expected target damage value using quantum particle swarm optimization[C]//Proc. of the 2nd International Conference on Developments in Systems Engineering, 2009 : 329 - 334.

共引文献21

同被引文献123

引证文献12

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部