期刊文献+

锂电池温度分析及内部结构散热优化 被引量:4

TEMPERATURE ANALYSIS OF LITHIUM BATTERY AND HEAT DISSIPATION OPTIMIZATION OF ITS INTERNAL STRUCTURE
下载PDF
导出
摘要 储能技术的引入有效提高了可再生能源发电接入电力系统的效率与安全稳定性,但目前在电力系统的储能系统中广泛使用的锂电池存在的热失控问题还有待进一步解决。对特定型号的锂电池进行了在室温、无散热条件下,充电倍率为0.2 C,放电倍率分别为0.2、0.3、0.4和0.5 C时的充放电温升实验,并得到了相应的实验数据。建立上述锂电池的热效应三维模型后,根据实验数据来确定仿真模拟中对应的热物性参数;随后通过ANSYS仿真软件模拟改变电池组内部单体电芯的截面形状,探究可改善锂电池工作温度的内部结构形式。仿真结果表明,保持电池组内部单体电芯的截面积基本不变和长度不变,将截面形状由矩形改为正方形,并维持单体电芯的数量和间隙、外表面铝合金外壳厚度、环境温度、各项散热系数和电池的生热速率不变,此时由于电池组内部流道空间增大,会相应增大电池组内部的对流传热效果,从而带走更多热量。因此相较于矩形截面的锂电池热效应模型,正方形截面的锂电池热效应模型在由表面积减小而引起的整体散热量降低的情况下,在相同放电倍率时引起的温升更小,可优化锂电池的工作温度。 Energy storage technology can effectively improve the power system efficiency,safety and stability,when renewable energy power generation connected to power system.The problem of thermal runaway in lithium batteries which are widely used in energy storage system of power system,needs to be further resolved.In this paper,the temperature rise experiment of specific type of lithium battery during charging and discharging was carried out,at room temperature without heat dissipation,with charge rate of 0.2 C,discharge rate of 0.2,0.3,0.4,and 0.5 C.The corresponding experimental data were obtained.After the thermal effect 3D model of the corresponding lithium battery is established,the corresponding thermophysical parameters in the simulation are determined according to the experimental data.Changing the cross-section shape of the single cell in the battery pack by ANSYS software,to explore the internal structure which can improve the working temperature of the lithium battery.In the case of a fixed cross-sectional area and length of the internal single cell in battery pack,the number of single cell and the gap,the thickness of the outer surface aluminum alloy shell,the ambient temperature,the heat dissipation coefficient and the heat generation rate of the battery,the simulation results show that the cross-section shape is determined by if a square replaces a rectangle,the flow channel space inside the battery pack will increase,which will increase the convective heat transfer effect inside the battery pack to take away more heat.Therefore,the overall heat dissipation of the thermal effect model of lithium battery with a square cross-section is reduced,and a smaller temperature rise can be obtained at the same discharge rate,which can optimize the working temperature of the lithium battery.
作者 孙明生 洪杰 李扬 徐志成 范奇 王军 Sun Mingsheng;Hong Jie;Li Yang;Xu Zhicheng;Fan Qi;Wang Jun(Jiangsu New Energy Development Co.,Ltd.,Nanjing 210005,China;Key Laboratory of Solar Energy Science and Technology in Jiangsu Province,Nanjing 210096,China;School of Energy and Environment,Southeast University,Nanjing 210096,China)
出处 《太阳能》 2021年第8期41-50,共10页 Solar Energy
关键词 锂电池 热分析 储能 结构优化 放电倍率 lithium battery thermal analysis energy storage structural optimization discharge rate
  • 相关文献

参考文献2

二级参考文献48

  • 1付正阳,林成涛,陈全世.电动汽车电池组热管理系统的关键技术[J].公路交通科技,2005,22(3):119-123. 被引量:77
  • 2温兆银.钠硫电池及其储能应用[J].上海节能,2007(2):7-10. 被引量:38
  • 3YOSHIMOTO K,NANAHARA T,KOSHIMIZU G. Analysis of data obtained in demonstration test about battery energy storage system to mitigate output fluctuation of wind farm[A].Calgary,AB,Canada,2009.1-5.
  • 4KAWAKAMI N,IIJIMA Y,SAKANAKA Y. Development and field experiences of stabilization system using 34 MW NAS batteries for a 51 MW wind farm[A].Bari,Italy,2010.2371-2376.
  • 5VARTANIAN C,BENTLEY N. A123 systems advanced battery energy storage for renewable integration[A].Phoenix,AZ,USA,2011.1-7.
  • 6International Electrotechnical Commission Market Strategy Board. Grid integration of large-capacity renewable energy sources and use of large-capacity electrical energy storage[R].2012.
  • 7WANG X Y,VILATHGAMUWA D M,CHOI S S. Determination of battery storage capacity in energy buffer for wind farm[J].IEEE Transactions on Energy Conversion,2008,(03):868-878.doi:10.1109/TEC.2008.921556.
  • 8RIFFONNEAU Y,BACHA S,BARRUEL F. Optimal power flow management for grid connected PV systems with batteries[J].IEEE Trans on Sustainable Energy,2011,(03):309-320.
  • 9TERADA N,YANAGI T,ARAI S. Development of lithium batteries for energy storage and EV applications[J].Journal of Power Sources,2001,(1/2):80-92.
  • 10WADE N,TAYLOR P,LANG P. Energy storage for power flow management and voltage control on an 11 kV UK distribution network[A].Prague,Czech Republic,2009.1-4.

共引文献206

同被引文献32

引证文献4

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部