期刊文献+

分数阶导数的不适定性及其相关问题

Ill-posedness of the Fractional Derivatives and Other Related Problems
下载PDF
导出
摘要 根据分数阶导数的定义,计算基本初等函数在Riemann-Liouville分数阶导数和Caputo分数阶导数不同定义下的分数阶导数,并对同一基本初等函数不同分数阶导数进行计算,研究分数阶导数的不适定性、相容性和四则运算等问题。研究推断出基本初等函数分数阶导数随着阶数变化而变化的趋势,同时发现,分数阶导数并不具备整数阶导数的乘法和除法法则,而是具有更复杂的分析性质。 To study the ill-posedness,compatibility and basic arithmetic operations of fractional derivatives,the fractional derivatives of the elementary functions in the sense of Riemann-Liouville fractional derivative and the Caputo fractional derivative are calculated respectively,and the different order fractional derivatives for a given elementary function calculated according to the definition of fractional derivatives.Thus,it is inferred that the fractional derivatives of a given elementary function change with the order change of the fractional derivatives,and it is found that the usual multiplication and division rule of integer order derivative does not apply to a fractional derivative,which has more complicated analysis properties.
作者 詹华税 张梦杰 ZHAN Huashui;ZHANG Mengjie(School of Applied Mathematics,Xiamen University of Technology,Xiamen 361024,China)
出处 《厦门理工学院学报》 2021年第3期77-82,共6页 Journal of Xiamen University of Technology
关键词 分数阶导数 基本初等函数 不适定问题 Riemann-Liouville Caputo fractional derivative elementary function ill-posed problem Riemann-Liouville Caputo
  • 相关文献

参考文献6

二级参考文献40

  • 1王培光,葛渭高.ON THE OSCILLATION OF SOLUTIONS OF HYPERBOLIC PARTIAL FUNCTIONAL DIFFERENTIAL EQUATIONS[J].Applied Mathematics and Mechanics(English Edition),1999,20(7):47-55. 被引量:12
  • 2徐明瑜,谭文长.中间过程、临界现象——分数阶算子理论、方法、进展及其在现代力学中的应用[J].中国科学(G辑),2006,36(3):225-238. 被引量:34
  • 3S.G.Samko,A.A.Kilbas and O.I.Marichev,Fractional Integrals and Derivatives:Theory and Applications[M].Gordon and Breach,New York,1993.
  • 4I.Podlubny,Fractional Differential Equations[M].Academic Press,San Diego,1999.
  • 5A.A.Kilbas,H.M.Srivastava and J.J.Trujillo,Theory and Applicationsof Fractional Differential Equations[M].Elsevier,Amsterdam,2006.
  • 6Oldham K B,Spanier J.The Fractional Calculus[M].New York-London:Academic Press,1974.
  • 7Li Xiao-rang.Fractional Calculus,Fractal Geometry and Stochastic Process[D].Ontario:The University of Western Ontario USA,2003.
  • 8W.G.Gl?ckle and T.F.Nonnenmacher,A fractional calculus approach to selfsimilar proteindynamics[J].Biophysical Journal,1995,68:46-53.
  • 9M.Kopfet al,Anomalous diffusion behavior of water in biological tissues[J].Biophysical Journal,1996.
  • 10R.R.Nigrnatullin and S.I.Osokin,Signal processing and recognition oftree kinetic equationscontaining non—integer derivatives from law dielectric data[J].Signal Processing,2003,83:2433-2453.

共引文献40

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部