期刊文献+

结合注意力机制与时空特征融合的长时程行为识别方法 被引量:2

Attention-embedded long-term spatial-temporal feature fusion for action recognition
下载PDF
导出
摘要 为了建立基于视频行为识别的长时程图像序列的时空信息模型,文章提出了一种嵌入注意力的时空特征融合网络(attention-embedded spatial-temporal feature fusion network,ASTFFN)的深度神经网络模型。ASTFFN将一个包含动作的长时程图像序列分割成多个重叠的片段,并使用一个注意力嵌入特征提取网络(attention-embedded feature extraction network,AFEN)从每个片段中的RGB图像或光流图像中提取经过注意力加权的时空特征,进而融合每个片段的时空加权特征,生成行为识别的视频级预测。基于UCF101和HMDB51行为识别数据库进行了大量的实验,验证了方法的有效性。与目前主流的行为识别算法相比,该文方法在识别精度上取得了较好的效果。 To model the spatial-temporal information from long-term image sequences for video-based action recognition,a deep neural network named attention-embedded spatial-temporal feature fusion network(ASTFFN)was developed.ASTFFN divided a long-term image sequence containing action into several overlapping snippets and used an attention-embedded feature extraction network(AFEN)to extract attention-weighted spatial or temporal features from the RGB images or optical flow images in each snippet.Next,the weighted spatial and temporal features of each snippet were fused to generate video-level prediction of action recognition.Extensive experiments on two action recognition benchmarks,including the UCF101 database and the HMDB51 database,show the effectiveness of the proposed method.Compared with state-of-the-art action recognition algorithms,the proposed method achieves competitive results for recognition accuracy.
作者 孙宁 郝一嘉 宦睿智 刘佶鑫 韩光 SUN Ning;HAO Yijia;HUAN Ruizhi;LIU Jixin;HAN Guang(Engineering Research Center of Wideband Wireless Communication Technology of Ministry of Education, Nanjing University of Posts and Telecommunications, Nanjing 210003, China)
出处 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2021年第8期1051-1058,1145,共9页 Journal of Hefei University of Technology:Natural Science
基金 国家自然科学基金资助项目(61471206,61871445) 江苏省自然科学基金资助项目(BK61471206,BK61871445)和南京邮电大学科研基金资助项目(NY218066)。
关键词 注意力机制 时空特征融合 动作识别 attention mechanism spatial-temporal feature fusion action recognition
  • 相关文献

同被引文献21

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部