期刊文献+

基于卷积神经网络的睡眠呼吸暂停自动检测方法 被引量:3

Sleep apnea automatic detection method based on convolutional neural network
原文传递
导出
摘要 传统基于机器学习的睡眠呼吸暂停(SA)检测方法,需花大量工作在特征工程与分类器设计上。本文提出了一种基于卷积神经网络(CNN)的SA自动检测方法,构建了一个包含4个卷积层、4个池化层、2个全连接层和1个分类层的一维CNN网络模型,通过网络自身结构实现特征自动提取与分类。利用呼吸暂停-心电图(Apnea-ECG)数据库中70例整晚单通道睡眠心电图(ECG)数据对该方法进行了验证,通过对比实验发现当输入为单通道ECG信号、RR间期(RRI)序列、R峰值序列、RRI序列+R峰值序列四种情况时,网络在SA片段检测上的准确率为80.1%~88.0%,表明该CNN网络是有效的,能从原始单通道ECG信号或其派生信号RRI、R峰值序列中自动提取特征并分类。当网络输入为RRI序列+R峰值序列时效果最好,在片段SA检测上的准确率、灵敏度和特异度分别为88.0%、85.1%和89.9%,个体SA诊断准确率达100%。研究结果表明,本文提出的方法能有效提高SA检测的准确性和鲁棒性,且性能优于近年主要文献报道,有望应用于配备远程服务器的便携式SA筛查诊断设备中。 Sleep apnea(SA)detection method based on traditional machine learning needs a lot of efforts in feature engineering and classifier design.We constructed a one-dimensional convolutional neural network(CNN)model,which consists in four convolution layers,four pooling layers,two full connection layers and one classification layer.The automatic feature extraction and classification were realized by the structure of the proposed CNN model.The model was verified by the whole night single-channel sleep electrocardiogram(ECG)signals of 70 subjects from the Apnea-ECG dataset.Our results showed that the accuracy of per-segment SA detection was ranged from 80.1%to 88.0%,using the input signals of single-channel ECG signal,RR interval(RRI)sequence,R peak sequence and RRI sequence+R peak sequence respectively.These results indicated that the proposed CNN model was effective and can automatically extract and classify features from the original single-channel ECG signal or its derived signal RRI and R peak sequence.When the input signals were RRI sequence+R peak sequence,the CNN model achieved the best performance.The accuracy,sensitivity and specificity of per-segment SA detection were 88.0%,85.1%and 89.9%,respectively.And the accuracy of per-recording SA diagnosis was 100%.These findings indicated that the proposed method can effectively improve the accuracy and robustness of SA detection and outperform the methods reported in recent years.The proposed CNN model can be applied to portable screening diagnosis equipment for SA with remote server.
作者 高群霞 商丽娟 吴凯 GAO Qunxia;SHANG Lijuan;WU Kai(Department of Electronic,Software Engineering Institute of Guangzhou,Guangzhou 510990,P.R.China;Department of software engineering,Neusoft Institute Guangdong,Foshan,Guangdong 528225,P.R.China;Department of Biomedical Engineering,School of Material Science and Engineering,South China University of Technology,Guangzhou 510006,P.R.China)
出处 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2021年第4期678-685,共8页 Journal of Biomedical Engineering
基金 国家重点研发计划(2020YFC2004300,2020YFC2004301) 广东省基础与应用基础研究基金自然科学基金杰出青年项目(2021B1515020064) 广东省普通高校青年创新人才类项目(2019KQNCX230) 佛山市自筹经费类科技计划项目(1920001000636) 广州大学华软软件学院科学研究项目(ky202014)。
关键词 睡眠呼吸暂停 卷积神经网络 单通道心电信号 RR间期 R峰值 sleep apnea convolutional neural network single-channel electrocardiogram signal RR interval R peak
  • 相关文献

参考文献5

二级参考文献14

共引文献1759

同被引文献24

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部