期刊文献+

优化RBF神经网络控制水厂混凝剂投加的研究 被引量:4

Optimized RBF Neural Networks Predicts Coagulation in Waterworks
下载PDF
导出
摘要 净水厂混凝剂投加受多重进水因素影响,且变化规律呈现高度的非线性模式,难以控制,采用PSO(粒子群算法)对RBF(径向基神经网络)进行优化,建立误差反向传播的非线性高维映射水厂投药量动态模型。相较于单一RBF模型,优化后的RBF模型平均相对误差降低了3.05%、最大相对误差降低了0.1986,迭代收敛速度快,对不同的水厂也具有良好的适应性。 The amount of coagulation in the process of water purification in water plants is influenced by multiple water ingress factors,and the law of change presents a highly nonlinear pattern difficult to control.Based on the RBF optimized by PSO,a dynamic model of nonlinear high-dimensional mapping water plant with error reverse propagation is established.Compared with the single RBF model,the average relative error is reduced by 3.05%,the maximum relative error is reduced by 0.1986,and has a faster iterative convergence speed,and also has good adaptability to the water plant of different processes.
作者 庹婧艺 徐冰峰 徐悦 喻岚 王雪颖 郭露遥 TUO Jing-yi;XU Bing-feng;XÜ Yue;YU Lan;WANG Xue-ying;GUO Lu-yao(School of Kunming University of Science and Technology,Kunming 650000,China)
出处 《中国农村水利水电》 北大核心 2021年第8期212-215,220,共5页 China Rural Water and Hydropower
基金 国家自然科学基金项目(4180011077)。
关键词 混凝剂投加 RBF PSO 自来水厂 coagulant dosage RBF neural network particle swarm optimization waterworks
  • 相关文献

参考文献10

二级参考文献80

共引文献150

同被引文献72

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部