期刊文献+

多时间尺度电热综合能源系统状态估计研究 被引量:9

Multi-timescale state estimation for integrated electricity and heat system
下载PDF
导出
摘要 电热综合能源系统的广泛发展促进了新能源消纳,提高了多能系统运行灵活性。然而,电力系统和热力系统运行时间尺度差异使得对电热综合能源系统进行准确状态估计较为困难。本文通过研究电热综合能源系统内的耦合和交互特性,通过有限差分法将描述热力系统动态特性的偏微分方程差分化,从而提出一种多时间尺度电热综合能源系统状态估计模型,并利用拉格朗日乘子进行求解。算例分析表明:本文所提多时间尺度方法对热力系统供水温度一段时间内的变化趋势估计与实测数据相比,其平均相对误差为0.27%,而稳态模型所得结果平均相对误差为1.03%,可以准确反映电热综合能源系统的多时间尺度特性。 The extensive development of integrated electricity and heat systems(IEHS)has promoted the absorption of renewable energy and improves the operation flexibility of multi-energy system.However,the time scale differences between electric power system and district heating system make it complicate to perform the estimation procedure accurately.In this paper,the coupling and interaction mechanisms in IEHS are studied.The partial differential equations describing the thermal dynamics are solved by the finite difference method,and the multitimescale state estimation model is proposed using Lagrange multiplier.Case studies shows that,compared with measured data,the average relative error of the proposed multi-timescale method on evaluating the change of supply water temperature within a period is 0.27%,while that of the steady state model is 1.03%.The proposed multitimescale method can accurately describe the multi-timescale characteristics of the IEHS.
作者 慈文斌 顾海飞 朱劲松 CI Wenbin;GU Haifei;ZHU Jinsong(State Grid Shandong Electric Power Company,Jinan 250000,China;Department of Electrical Engineering,Southeast University,Nanjing 210096,China;State Grid Jiangsu Electric Power Co.,Ltd.,Nanjing 210096,China)
出处 《热力发电》 CAS CSCD 北大核心 2021年第9期94-100,共7页 Thermal Power Generation
基金 国家自然科学基金项目(51977032) 国网总部科技项目(1300-201918281A-0-0-00)。
关键词 电热综合能源系统 状态估计 多时间尺度 动态特性 热力系统 耦合 integrated electricity and heat system state estimation multi-timescale dynamic characteristics thermodynamic system coupling
  • 相关文献

参考文献3

二级参考文献50

  • 1Yliniemi K. Fault detection in district heating substations[D]. Luleh: Lule~ University of Technology, 2005.
  • 2Bohm B, Ha S, Kim W, et al. Simple models for operational optimisation[R]. Denmark: Technical University of Denmark (DTU), Fraunhofer-Institut for Environmental, Safety and Energy Technology (UMSICHT), Korea District Heating Corporation (KDHC), 2002.
  • 3Steer K C B, Wirth A, Halgamuge S K. Control period selection for improved operating performance in d/strict heating networks[J]. Energyand Buildings, 2011, 43(2-3): 605-613.
  • 4Ben Hassine I, EickerU. Impact ofload structure variation and solar thermal energy integration on an existing district heating network[J]. Applied Thermal Engineering, 2013, 50(2): 1437-1446.
  • 5Gabrielaitiene I, B~hm B, Sunden B. Modelling temperature dynamics of a district heating system in Naestved, Denmark-a case study[J]. Energy Conversion and Management, 2007, 48(1): 78-86.
  • 6Benonysson A, B~hm B, Ravn H F. Operational optimization in a district heating system[J]. Energy Conversion and Management, 1995 5(36): 297-314.
  • 7Liu X, Jenkins N, Wu J, et al. Combined analysis of electricity and heat networks[D]. Cardiff: CardiffUniversity, 2014.
  • 8Fang T, Lahdelma R. State estimation of district heating network based on customer measurements[J]. Applied Thermal Engineering, 2014, 73(1): .1211-1221.
  • 9Pan Z, Guo Q, Sun H. Interactions of district electricity and heating systems considering time-scale characteristics based on quasi-steady multi-energy flow[J/OL] .. Applied Energy, [2016-02-14]. http://dx.doi.org/10.1016/j.apenergy.2015.10.095.
  • 10Clamond D. Efficient resolution of the colebrook equation[J]. Industrial & Engineering Chemistry Research, 2009, 48(7): 3665-3671.

共引文献113

同被引文献118

引证文献9

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部