期刊文献+

H_2 generation kinetics/thermodynamics and hydrolysis mechanism of high-performance La-doped Mg-Ni alloys in Na Cl solution——A large-scale and quick strategy to get hydrogen

下载PDF
导出
摘要 In this work,La-doped Mg-Ni multiphase alloys were prepared by resistance melting furnace(RMF)and then modified by high-energy ball milling(HEBM).The hydrolysis H_(2) generation kinetics/thermodynamics of prepared alloys in Na Cl solutions have been investigated with the help of nonlinear and linear fitting by Avrami-Erofeev and Arrhenius equations.Combining the microstructure information before and after hydrolysis and thermodynamics fitting results,the hydrolysis H_(2) generation mechanism based on nucleation&growth has been elaborated.The final H_(2) generation capacities of 0La,5La,10La and 15 La alloys are 677,653,641 and 770 m L·g^(-1)H_(2) in 240 min at291 K,respectively.While,the final H_(2) generation capacities of HEBM 0La,5La,10La and 15 La alloys are 632,824,611 and 653 m L·g^(-1)H_(2) in 20 min at 291 K,respectively.The as-cast 15La alloy and HEMB 5La alloy present the best H_(2) production rates and final H_(2) production capacities,especially the HEBM 5La can rapidly achieve high H_(2) generation capacity(670 and 824 m L·g^(-1)H_(2) )at low temperature(291 K)within short time(5 and 20 min).The difference between the H_(2) generation capacities is mainly originated from the initial nucleation rate of Mg(OH)_(2) and the subsequent processes affected by the microstructures and phase compositions of the hydrolysis alloys.Relative low initial nucleation rate and fully growth of Mg(OH)_(2) nucleus are the premise of high H_(2) generation capacity due to the hydrolysis H_(2) generation process consisted by the nucleation,growth and contacting of Mg(OH)_(2) nucleus.To utilization H_(2) by designing solid state H_(2) generators using optimized Mg-based alloys is expected to be a feasible H_(2) generation strategy at the moment.
出处 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2021年第3期1068-1083,共16页 镁合金学报(英文)
基金 financially supported by the National Natural Science Foundation of China(Grant Nos.51704188,51702199,61705125,51802181) the State Key Laboratory of Solidification Processing in NWPU(Grant No.SKLSP201809) Natural Science Foundation of Shaanxi Province(Grant No.2019JQ-099) Research Starting Foundation from Shaanxi University of Science and Technology(Grant No.2016GBJ-04) the financial support of China Scholarship Council(Grant No.201808610089)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部