摘要
本文证明带有时滞项g(t,u_(t))的非经典反应扩散方程在依赖于时间的空间中拉回吸引子的存在性,其中外力项k∈x)∈H^(-1)(Ω),非线性项f分别满足临界指数增长和任意q-1(q≥2)次多项式增长.
We prove the existence of the pullback attractors in the time-dependent space for the nonclassical reaction-diffusion equations with delay term g(t,ut),the forcing term k(x)∈H^(-1)(Ω)and the nonlinearity f satisfying the critical exponent growth and the polynomial growth of arbitrary q-1(q≥2)order.
作者
朱凯旋
谢永钦
张江卫
Kai Xuan ZHU;Yong Qin XIE;Jiang Wei ZHANG(Hunan Province Cooperative Innovation Center for the Construction and Development of Dongting Lake Ecological Economic Zone,College of Mathematics and Physics Science,Hunan University of Arts and Science,Changde 415000,P.R.China;School of Mathematics and Statistics,Changsha University of Science and Technology,Changsha 410114,P.R.China)
出处
《数学学报(中文版)》
CSCD
北大核心
2021年第5期721-736,共16页
Acta Mathematica Sinica:Chinese Series
基金
湖南省自然科学基金(2018JJ2416)
湖南省教育厅科学研究基金(20C1263)
湖南文理学院科技创新团队资助项目(数值计算与随机过程及其应用)。
关键词
非经典反应扩散方程
时滞
临界指数增长
任意次多项式增长
拉回吸引子
nonclassical reaction-diffusion equations
delays
critical exponent growth
polynomial growth of arbitrary order
pullback attractors