期刊文献+

基于域适应学习的非侵入式负荷分解问题研究 被引量:1

Research on Non-intrusive Load Monitoring Based on Domain Adaptive Learning
下载PDF
导出
摘要 基于神经网络的非侵入式负荷分解方法需要利用大量的先验数据对神经网络进行训练,针对某一特定设备在大量的先验数据参与训练的情况下,可达到较好的分解效果,然而将该模型应用于其他设备时,分解精度会迅速下降,因此具有较大的局限性,不利于基于神经网络的非侵入式负荷分解方法在智能电网中的大规模部署。针对此类问题,提出了一种域适应深度学习方法,该方法从训练数据角度出发,混合源域数据与目标域数据对网络进行训练,极大提升了非侵入式负荷分解网络模型的泛化性能。依据现有公开数据进行实验测试,本文所提方法显示出了良好的效果。
作者 苏海军 侯坤福 高敬更 王琨 王治国 Su HaiJun;Hou Kunfu;Gao Jinggeng;Wang Kun;Wang Zhiguo
出处 《甘肃科技》 2021年第14期20-26,66,共8页 Gansu Science and Technology
  • 相关文献

参考文献3

二级参考文献172

  • 1KRIZHEVSKY A,SUTSKEVER I,HINTON G E.Imagenet classification with deep convolutional neural networks[C]∥Advances in Neural Information Processing Systems.Red Hook,NY:Curran Associates,2012:1097-1105.
  • 2DAHL G E,YU D,DENG L,et al.Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition[J].Audio,Speech,and Language Processing,IEEE Transactions on,2012,20(1):30-42.
  • 3ZEN H,SENIOR A,SCHUSTER M.Statistical parametric speech synthesis using deep neural networks[C]∥Acoustics,Speech and Signal Processing(ICASSP),20131EEE International Conference on.Piscataway,NJ:IEEE,2013:7962-7966.
  • 4BAHDANAU D,CHO K,BENGIO Y.Neural machine translation by jointly learning to align and translate[J].CoRR,2014:abs/1409.0473.
  • 5ZEILER M D,FERGUS R.Visualizing and understanding convolutional neural networks[J].CoRR,2013:abs/1311.2901.
  • 6SERMANET P,EIGEN D,ZHANG X,et al.Overfeat:integrated recognition,localization and detection using convolutional networks[J].CoRR,2013:abs/1312.6229.
  • 7RUSSAKOVSKY O,DENG J,SU H,et al.Image Net large scale visual recognition challenge[J].CoRR,2014:abs/1409.0575.
  • 8LIN M,CHEN Q,YAN S.Network in network[J].CoRR,2013:abs/1312.4400.
  • 9SUN Y,WANG X,TANG X.Deep learning face representation from predicting 10,000 classes[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE,2014:1891-1898.
  • 10TAIGMAN Y,YANG M,RANZATO M A,et al.Deepface:closing the gap to human-level performance in face verification[C]∥Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.Piscataway,NJ:IEEE,2014:1701-1708.

共引文献876

同被引文献20

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部