期刊文献+

电弧增材制造成形在线监测与控制研究进展及展望 被引量:4

Research progress and prospect of on-line forming monitoring and control in wire and arc additive manufacturing
下载PDF
导出
摘要 电弧增材制造以电弧为载能束逐层熔化金属丝材直至形成全焊缝金属构件,因其制造成本低、成形效率高、材料利用率高等优势而备受推崇。成形尺寸的自动检测与控制是推进电弧增材制造技术工程化应用、快速产业化必须解决的关键科学与技术挑战。主要从成形工艺调控、过程在线监测与控制角度阐述了国内外电弧增材制造成形控制技术的研究现状,以红外、电参数和视觉监测原理为出发点,重点分析了现有电弧增材制造在线监测与成形控制技术的研究进展与不足,提出了未来电弧增材制造成形在线监测与控制技术的主要发展方向。 Wire and arc additive manufacturing employs an electric arc as energy beam to melt metal wire layer by layer to fabricate full weld metal components. It is highly praised for its advantages of low manufacturing cost,high deposition rate, and high material utilization. The automatic detection and control of forming dimensions is a key scientific and technical challenge that must be solved to promote the engineering application and rapid industrialization of wire and arc additive manufacturing. This study mainly discusses current research status of the forming control technology in wire and arc additive manufacturing from the perspective of forming process regulation and on-line monitoring and control. Starting from the principle of infrared,electrical parameter and visual monitoring,research progress and shortcomings of existing monitoring and forming control in wire and arc additive manufacturing are analyzed. The main future outlook of on-line monitoring and control in wire and arc additive manufacturing in the future is put forward.
作者 熊俊 郑森木 陈辉 张卫华 XIONG Jun;ZHENG Senmu;CHEN Hui;ZHANG Weihua(Southwest Jiaotong University,Chengdu 610031,China;Sichuan Aerospace Changzheng Equipment Manufacturing Co.,Ltd.,Chengdu 610036,China)
出处 《电焊机》 2021年第8期70-78,I0005,共10页 Electric Welding Machine
基金 国家自然科学基金资助项目(51975491,62173280) 四川省科技计划项目(2021JDRC0085,2021JDRC0097,2020YFG0197)。
关键词 电弧增材制造 成形工艺 在线监测 闭环控制 wire and arc additive manufacturing forming technology on-line monitoring closed-loop control
  • 相关文献

参考文献4

二级参考文献58

  • 1王天明,习俊通,金烨.熔融堆积成型中的原型翘曲变形[J].机械工程学报,2006,42(3):233-238. 被引量:32
  • 2颜敏,张述泉,王华明.激光熔化沉积AerMet 100耐蚀超高强度钢的凝固组织及力学性能[J].金属学报,2007,43(5):472-476. 被引量:15
  • 3Rahmati S, Dickens P. Rapid tooling analysis of stereolithography injection mould tooling [ J ]. International Journal of Machine Tools & Manufacture, 2007, 47(5): 740-747.
  • 4Liu H J, Fan Z T, Huang N Y. A note on rapid manufacturing process of metallic parts based on SLS plastic prototype[J]. Journal of Materials Processing Technology, 2003, 142(3) : 710 - 713.
  • 5Song J L, Li Y T, Deng Q L, et al. Rapid prototyping manufacturing of silica sand patterns based on selective laser sintering[J]. Journal of Materials Processing Technology, 2007, 187 - 188:614 - 618.
  • 6Pahole I, Drstvensek I, Ficko M, etal. Rapid prototyping processes give new possibilities to numerical copying techniques[ J]. Journal of Materials Processing Technology, 2005, 164- 165: 1416- 1422.
  • 7Jandric Z, Labudovic M, Kovacevic R. Effect of heat sink on microstructure of three-dimensional parts built by welding-based deposition [ J]. International Journal of Machine Tools & Manufacture, 2004, 44 (6) : 785 - 796.
  • 8Zhang Y M, H P J, Chen Y W, etal. Automated system for welding- based rapid prototyping[J]. Mechatronics, 2002, 12(2) : 37 - 53.
  • 9Zhang Y M, Chon Y W, Li P J, et al. Weld deposition-based rapid prototyping: a preliminary study[J]. Journal of Materials Processing Technology, 2003, 135(2- 3): 347- 357.
  • 10Arcella F G,Froes F H.Producing titanium aerospace components from powder using laser forming[J].JOM,2000,52(5):28-30.

共引文献487

同被引文献64

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部